SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation Department
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Research Master's
1.6	Program of study/Qualification	Cyber Physical Systems
1.7	Form of education	Full time
1.8	Subject code	1.00

2. Data about the subject

2.1	Subject name				Mathematical Foundation of Data Science			
2.2	Subject area				Mathematics, Applied			
2.2	Course responsible/lecturer				Prof. dr. Ioan Radu F	Prof. dr. Ioan Radu Peter, <u>Ioan.Radu.Peter@math.utcluj.ro</u>		
2.3	Teachers in charge of seminars				Prof. dr. Ioan Radu Peter, <u>Ioan.Radu.Peter@math.utcluj.ro</u>			
2.4 Y	2.4 Year of study 1 2.5 Semester 1			2.6 Assessment		E		
2.7 Subject category		Formative category					DA	
		Optionality					DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	1	3.3 Seminar	0	3.3 Laboratory work	2	3. Proj	3 iect	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	14	3.6 Seminar	0	3.6 Laboratory work	28	3. Proj	3.6 Project	
3.7 Individual study:											
(a) Manual, lecture material and notes, bibliography							1	4			
(b) Supplementary study in the library, online and in the field						2	8				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	3			
(d) Tutoring							0)			
(e) Exams and tests							(1)	3			
(f) Other activities						()				
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58											
3.9 Total hours per semester (3.4+3.8)100											
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	-
4.2	Competence	Basic mathematical knowledge

5. Requirements (where appropriate)

5.1	For the course	-
5.2	For the applications	Laboratory attendance is mandatory

6. Specific competences

Professional	Analysis and solution of modeling and design problems in the case of cyber-physical systems
competences	using knowledge of advanced mathematics and fundamental concepts of automation
Cross competences	Identifying the needs and opportunities for continuous training, demonstrating critical and innovative thinking skills and effectively utilizing learning resources for personal development.

7. Discipline objectives (as results from the *key competences gained*)

		The course will add mathematical foundation and really
		understanding of the inner workings of machine learning
7.1	General objective	algorithms and applications in data science.
7.2	Specific objectives	Understanding mathematical tools used in data science.

8. Contents

8.1. Lecture (syllabus)	Number	Teaching	Notes
	of hours	methods	
Introduction.	2		
Data normalization. Meanings, why and how?	2		
Generalized Inverse I.	2		
Generalized Inverse II. Applications.	2	Presentation	
Factorizations (QR, LD)	2	and reading	
Singular value decomposition.	2	from course	
Applications in lare systems.	2	references	
Eigenvectors, eigenvalues, Gramm matrices.	2	questions and	
Jordan forms, diagonalizations.	2	answers, case	
Rayleigh quotients. Applications in Machine Learning.	2	studies.	
Optimization methods and ML.	2		
Matrix optimization and algorithms related to	2	-	
principal directions.			

Optimizations with constraints. Karush Kuhn Tucker	2		
type methods.			
Discussions. Thinking algorithms.	2		
Bibliography			
1. Matrix-Based Introduction to Multivariate Data	Analysis 2	nd ed. 2020 Editio	on
by Adachi (Author)			
2. The Matrix Calculus You Need For Deep Learning	g, Terence	e Parr and Jeremy	Howard
3. <u>Deep Learning</u> , MIT Press, Ian Goodfellow and Y	'oshua Ber	ngio and Aaron Co	ourville
8.2 Seminars /Laboratory/Project	Number	Teaching methods	Notes
	of hours		Notes
Introduction.	2		
Data normalization. Meanings, why and how?	2		
Generalized Inverse I.	2		
Generalized Inverse II. Applications.		Desurrentetier	
Factorizations (QR, LD)	2	reading, presentation and exemplification, individual exercises,	
Singular value decomposition.	2		
Applications in lare systems.	2		
Eigenvectors, eigenvalues, Gramm matrices.	2		
Jordan forms, diagonalizations.	2		
Rayleigh quotients. Applications in Machine Learning.	2		
Optimization methods and ML.	2	problem solving	
Matrix optimization and algorithms related to	2	within a team,	
principal directions.			
Optimizations with constraints. Karush Kuhn Tucker	2		
type methods.			
Discussions. Thinking algorithms.	2		
Bibliography		•	•

Bibliography

- 1. Matrix-Based Introduction to Multivariate Data Analysis 2nd ed. 2020 Edition by Adachi (Author)
- 2. The Matrix Calculus You Need For Deep Learning, Terence Parr and Jeremy Howard
- 3. <u>Deep Learning</u>, MIT Press, Ian Goodfellow and Yoshua Bengio and Aaron Courville

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course will add mathematical foundation and really understanding of the inner workings of machine learning algorithms and applications in data science. The material is continuously adapted to the requirements of potential employers and to the feedback of already employed graduates.

10. Evaluation

Activity type	ity type 10.1 Assessment criteria 10.2 Assessment methods		10.3 Weight in the final grade				
10.4 Course	Exam	Exam	50%				
10.5 Seminars	Project	Project presentation	50%				
/Laboratory/Project	Toject						
10.6 Minimum standard of performance							
Mark M>=5, M=0, 5*E+0,5*P, where E= exam (minimum result 50%), P=Project presentation (minimum							
result 50%)							

Date of filling in:		Title Surname Name	Signature
16.03.2023	Lecturer	Prof. Dr. Ioan Radu Peter	
	Teachers in charge of	Prof. Dr. Ioan Radu Peter	
	application		

Date of approval in the Department of Automation

Head of department Prof.dr.ing. Honoriu Valean

Date of approval in the Faculty of Automation and Computer Science

Dean Prof.dr.ing. Liviu Miclea