SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	6.

2. Data about the subject

2.1 Subject name			Physic	Physics			
2.2 Course responsible/le	cturer	-	Prof.di	Prof.dr.fiz. Radu Fechete			
2.3 Teachers in charge of laboratory/ project	semin	ars/	Lect. D	ect. Dr. Dumitrita Corpodean			
2.4 Year of study	ı	2.5 Sem	ester	ster 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		С	
2.7 Cubicat astagamı	DF – f	fundamen	amentală, DD – în domeniu, DS – de specialitate, DC – complementară			DF	
2.7 Subject category DI – Impusă, DOp – opțională, DFac – facultativă				DI			

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminars		Laboratory	1	Project	
3.2 Number of hours per	42	of which:	Course	28	Seminars		Laboratory	14	Project	
semester	42	or writeri.	Course	20	Seminars		Laboratory	14	Project	
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography							16			
(b) Supplementary study in the library, online and in the field							10			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							14			
(d) Tutoring							10			
(e) Exams and tests								3		
(f) Other activities:							5			

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	58
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Good knowledge in high school physics				
	Good knowledge in high school mathematics				
4.2 Competence	Some knowledge in operating computers (Word, Power Point, Excel,				
	www).				

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	N/A

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science
	concepts
	C1.1 - Recognizing and describing specific concepts to calculability, complexity,
	programming paradigms and modeling of computing and communication
	systems
	C1.2 - Using specific theories and tools (algorithms, schemes, models,

	protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	 Introduction of the most important physical quantities that are encountered in automation engineering. Introduction of the main laws of physics that play a central role in automation engineering applications.
7.2 Specific objectives	 Understanding of the most important laws of classical mechanics Knowledge of the oscillatory and wave phenomena Knowledge of the sound characteristics and transfer phenomena Knowledge of the electrical, magnetically and electromagnetic phenomena. Knowledge of the quantum mechanical phenomena. The ability to document alone in a given scientific problem using the books library and the Internet. The ability to elaborate and to present a report on a given scientific problem The ability to represent graphically the physical quantities. The ability to use commercial computer programs for interpretation of the experimental data. The ability to solve a given physical problem and to express it in a mathematical form. The ability to work in a team for solving real physical problems

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
C1. Introduction in Physics. Fundamental and derivate physical	2		T
quantities and their measurement units. Basics of kinematics:	2		Teams
C2. Elements of motion (reference system, trajectory, space).		Didactic discourse	Teams
Velocity. Linear motions with constant velocity. Acceleration.		Didactic discourse, exposure and explanation of	
Linear motion with constant acceleration.	2	curricular subjects,	
Kinematics: Curvilinear motions (trajectory, velocity and		narrative-story related to	
acceleration).		the physics history and	
C3. Circular motion (angle, circular velocity, circular acceleration,		association with real life facts. Didactic conversation	Teams
law of motion with uniform angular velocity, law of motion with	_	(heuristics and catechetic) in	
uniform angular acceleration). Relations between linear and	2	which the students are	
circular quantities. Specific measurement units.		involved.	
C4. Dynamics: 1 st , 2 nd and 3 rd principles of dynamics. Inertial		Demonstration of physical	Teams
mass. Force. Linear momentum. Mechanic work. Power. Energy	2	laws in mathematical form and using objects to	
(kinetic, potential, total).		represents the	
C5. Momentum of force. Angular momentum. Conservations laws	2	physical phenomena	Teams
of: linear momentum, kinetically momentum, energy.	2	at reduced scale.	
C6. Oscillatory motion: Linearly harmonically oscillator. Dumped	_	Demonstration with actions	Teams
oscillations. Forced oscillations, resonance.	2	performed by students which are asked to: extract	
C7. Waves. Wave function. Differential equation, Characteristic		from problem the	Teams
phenomena: reflection, refraction, interference, diffraction.	2	significant data, to	

Standing waves.		observe,identify and	
C8. Acoustics: Definition. Sound sources. Fundamental sound and		classifyphysical laws and	Teams
superior harmonics. Sounds quality. Closed chambers acoustics,	2	types of motions.	
sound reverberation, reverberation time.			
C9. Electricity. Introduction. Electric charge. Coulombian Force.			Teams
Electric Field. Electric Field intensity. Electric Flux. Gauss law for	2		
the electric field. Electric field work.			
C10. Electric current. Definition. Electric current intensity. Density			Teams
of the electric current. Ohm's law. Electrons in solids. Electrically	2		
conductibility. Elements of electric circuit.			
C11. Magnetism: Magnetic field. Sources of the magnetic field.	2		Teams
Lorentz force.	2		
C12. Magnetic flux. Gauss law for the magnetic field. Element of	2		Teams
current. Magnetic force (Laplace force). Biot-Savart law.	2		
C13. Magnetic field produced by a liner conductor. Magnetic field			Teams
produced by a loop. Ampere's law. Electromagnetic induction.	2		
Faraday's law.			
C14. Maxwell's equations (differential and integral forms).			Teams
Electromagnetic waves: Maxwell's equations without sources,	2		
velocity, transversally, intensity, and range			

Bibliography

In UTC-N library

- 1. R. Fechete, Fundamental physics for engineers, course notes.
- 2. E. Culea, S. Nicoara, Fundamentals of Physics, RISOPRINT, Cluj-Napoca 2004
- 3. R. Fechete, Elemente de Fizica pentru Ingineri, Ed. UTPress, 2008.
- 4. I.Ardelean, Fizica pentru ingineri, Ed. UTPres, 2005.
- 5. I. Coroiu, E. Culea, Fizica I, Ed. UT. Press, 1999.

Multimedia teaching aids

- 6. Microsoft Encarta Encyclopedia.
- 7. Encyclopedia Britannica.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
L1. Work Protection. The study of thermoelectrically effect.	1	Heuristic discovery In laboratory of some physical	OnSite/OnLine
L2. Longitudinal and transverse standing waves.	1	phenomena.	OnSite/OnLine
L3. Optical spectroscopy.	1	Problematization	OnSite/OnLine
L4. The study of photoelectric effect.	1	(problematize)	OnSite/OnLine
L5. The determination of the energy gap of a semiconductor.	1	presentations of laws and principles of	OnSite/OnLine
L6. The study of Hall Effect.	1	general physics with	OnSite/OnLine
L7. Polarizations of light.	1	situations from real life, and situations from the future work of students.	OnSite/OnLine

Bibliography

- 1. R. Fechete, R. Chelcea, D. Moldovan, S. Nicoara, I. Coroiu, C. Badea, E. Culea, I. Cosma, N. Serban, Fizica: Indrumator de laborator, UT. PRESS, Cluj-Napoca, ISBN 978-973-662-952-5, (2014).
- 2. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/ThermoelectricEffect/
- 3. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/StandingWaves/
- 4. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/AtomicSpectra/
- 5. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PhotoelectricEffect/
- 6. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/HallEffect/
- 7. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/EnergyGap/
- 8. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PolarizationOfLight/
- 9. http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng <a href="http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng http://www.phys.utcluj.ro/resurse/Facultati/CalculatoareEng http://www.phys.utcluj.ro/resurse/ <a href="http://www.phys.utcluj.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Theoretical Knowledges accumulated at class, individual study	Teams' Quiz (16 questions; 5 answers/question)	70%
Seminar			
Laboratory	Practical knowledges (abilities) accumulated in TUCN Laboratory + Individual study (essays on a general Physics subject or practical)	Essay, Practical Presentation, PPT presentation, written Problems, Numeric simulations of physical processes. On Line Assessment	30%
Project			
	rd of performance: .75 mark + (2.75 student – 1 default = 1.5) total	4.5 rounded to 5) + all laboratories	

Titulari	Titlu Prenume NUME	Semnătura
Course	Prof.dr.fiz. Radu Fechete	
Applications		
Applications	Lect. Dr. Dumitrita Corpodean	
		Course Prof.dr.fiz. Radu Fechete

Date of approval in the department	Head of department Prof.dr.ing. Rodica Potolea
Date of approval in the Faculty Council	Dean Prof.dr.ing. Liviu Miclea