SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	55.2

2. Data about the subject

2.1 Subject name		Parallel and Distributed Computing				
2.2 Course responsible/lea	cturer		Conf.dr.ing. Anca Hangan – <u>Anca.Hangan@cs.utcluj.ro</u>			
2.3 Teachers in charge of s laboratory/ project	semin	ars/	Conf.dr.ing. Anca Hangan – <u>Anca.Hangan@cs.utcluj.ro</u>			
2.4 Year of study	IV	2.5 Sem	ester	ester 2 2.6 Type of assessment (E - exam, C - colloquium, V verification)		E
DF – fundamer		fundamen	tală, DD – în domeniu, DS – de specialitate, DC – complementară			DS
2.7 Subject category	DI — li	DI – Impusă, DOp – opțională, DFac – facultativă				

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	Laboratory	2	Project	
3.2 Number of hours per	56	ofwhich	Course	28	Sominars	Laboratory	28	Project	
semester	50	or writeri.	Course	20	Seminars	Laboratory	20	FIOJECI	
3.3 Individual study:									
(a) Manual, lecture materia	l and n	otes, bibli	ography						23
(b) Supplementary study in the library, online and in the field						14			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						24			
(d) Tutoring					4				
(e) Exams and tests						4			
(f) Other activities:									
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 69									
3.5 Total hours per semester (3.2+3.4) 125									
3.6 Number of credit points 5									

4. Pre-requisites (where appropriate)

4.1 Curriculum	Fundamental Algorithms, Fundamental programming techniques, Operating
	Systems, Structure of Computer Systems
4.2 Competence	C/C++ programming

5. Requirements (where appropriate)

5.1. For the course	Whiteboard, projector, computer
5.2. For the applications	Computers, Condor middleware, MPI library, C/C++ programming development
	environment

6. Specific competence

6.1 Professional competences	C4 Improving the performances of the hardware, software and communication
	systems (2 credits)
	C4.1 Identifying and describing the defining elements of the performances of
	the hardware, software and communication systems
	C4.2 Explaining the interaction of the factors that determine the performances
	of hardware, software and communication systems

	C4.3 Applying fundamental methods and principles for increasing performance
	of hardware, software and communication systems
	C4.4 Choosing criteria and methods for performance evaluation of hardware,
	software and communication systems
	CAE Developing professional colutions for bardware, software and
	C4.5 Developing professional solutions for hardware, software and
	communication systems based on performance optimization
	C5 Designing, managing the lifetime cycle, integrating and ensuring the
	integrity of hardware, software and communication systems (3 credits)
	C5 1 Specifying the relevant criteria regarding the lifetime cycle quality
	convitu and computing system's interaction with the environment and human
	security and computing system's interaction with the environment and numan
	operator
	C5.2 Using interdisciplinary knowledge for adapting the computing system to
	the specifc requirements of the application field
	C5.3 Using fundamental principles and methods for security, reliability and
	usability assurance of computing systems
	CF 4 Adaguate utilization of quality sofety and security standards in
	C5.4 Adequate utilization of quality, safety and security standards in
	information processing
	C5.5 Creating a project including the problem's identification and analysis, its
	design and development, also proving an understanding of the basic quality
	requirements
6.2 Cross competences	Ν/Δ
0.2 Closs competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	1. Students become aware of differences and similarities between parallel and distributed computing so the students understand the boundaries of both domains.
	2. Students become familiar with the principles of designing parallel programs.
	3. Students become familiar with the main classes of distributed algorithms.
7.2 Specific objectives	Parallel algorithms performance and scalability.
	Parallel algorithms design.
	Distributed algorithms: time synchronization, distributed mutual exclusion,
	causal ordering, leader election.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction: goal, administrative issues, parallel vs distributed computing.	2		
Parallel computing basics: computer architectures and programming models.	2		
Parallel algorithm design: parallelization process, data dependency.	2		
Parallel algorithm design: case study - ocean simulation.	2		
Parallel algorithm design: decomposition and mapping techniques.	2		
Improving the performance of parallel programs: load balancing	2	Interactive lectures	
issues.		using PPT	
Improving the performance of parallel programs: serialization and	2	presentations and	
communication issues.		exercises carried on	
Workload-driven evaluation of parallel systems.	2	on-site or on	
Cache coherence in symmetric multiprocessors.	2	Microsoft Teams.	
Parallel computing on distributed resources: Grid computing vs	2		
Hadoop.	Z		
Time: physical clocks synchronization (Cristian algorithm, Berkeley			
algorithm, Network Time Protocol), logical clocks (Scalar time,	2		
Vector time, efficient implementation of vector clocks - Singhal-	Z		
Kshemkalyani).			
Causal ordering: problem definition, Birman-Schiper-Stephenson,	2		

Schiper-Eggli-Sandoz.		
Leader election: problem definition, general networks (FloodMax,		
OptFloodMax), synchronous / asynchronous ring (LeLann, Chang-	2	
Roberts, Hirschberg-Sinclair).		
Leader election: synchronous / asynchronous ring (Franklin,	2	
Peterson), anonymous ring (Itai-Rodeh).	2	

Bibliography

1. Parallel and Distributed Computing - Lecture notes – A. Hangan ,http://users.utcluj.ro/~ancapop/pdc.html

2. Introduction to Distributed Systems -Concepts and design. George Coulouris, Jean Dollimore and Tim Kindberg, Prentice Hall, ISBN 0201-619-180, 2005 si editia revizuită 2008

3. *Distributed computing : principles, algorithms and systems,* M. Singhal, A Kshemkalyani, Cambridge University Press 0521876346, 2008

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to grid computing	2		
Job execution in Condor (Part 1)	2		
Job execution in Condor (Part 2)	2		
Workflows in Condor. Assignment 1.	2		
Laboratory test 1. Introduction to MPI.	2		
Point-to-point communication in MPI	2		
Collective communication in MPI. Assignment 2.	2		
Advanced collective communication and groups in MPI.	2		
Implementing matrix multiplication using Cannon's algorithm (Part	2	Problem based	
1). Assignment 3.	2	approach.	
Implementing matrix multiplication using Cannon's algorithm (Part	2		
2)	2		
Performance assessment of parallel programs. Shared memory	2		
model. Assigment 4.	2		
Performance assessment of parallel programs. Message passing	2		
model.	2		
Assignment 4 evaluation of individual results and group discussion.	2		
Laboratory Test 2.	2		

Bibliography

- 1. Anca Hangan, Anca Rarau, Catalin Sipos, "Parallel and Distributed Computing", 2009, UTPRESS, ISBN: 978-973-662-484-1
- 2. Introduction to Parallel Computing, V.Kumar, A. Grama, A. Gupta, G. Karypis, Benjamin-Cummings, ISBN 0-201-6486

3. Programming on parallel machines - GPU, multicore and clusters, N. Mathloff, University of California Davis, 2016, http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

As Cluj software workforce market gets more sophisticated, having solid knowledge of how to develop parallel programs and mastering the distributed computing are qualities that software companies look for.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Formal assessment to test theoretical knowledge and problem solving skills. Attendance and activity.	Assignments, written exam (if activities are carried on on-site), online test and oral examination (if activities are carried on online).	60%
Seminar			
Laboratory	Formal assessment to test practical skills for designing parallel and distributed	Assignments and tests (using Moodle).	40%

	solutions and impler and activity.	mentation . Attendance		
Project				
Minimum standard of performance:				
Design and implementation of parallel/distributed solutions using the theoretical models and tools (MPI, Condor grid middleware).				
Pre-requisite for written exam: 6 mandatory lecture attendances.				
Grade calculus: 40% laboratory + 10%course assignments+50% final exam				
Conditions for participating in the final exam: Laboratory grade ≥ 5				
Conditions for pro	motion: Final exam gr	rade ≥ 5		
Date of filling in:	Titulari			<u> </u>
Date of hims in	ntulari	litiu Prenume NOIVIE		Semnatura
Dute of himig in	Course	Conf.dr.ing. Anca Hangar	n	Semnatura
Date of minig in	Course	Conf.dr.ing. Anca Hangar Conf.dr.ing. Anca Hangar	n	Semnatura
Dute of minig in	Course	Conf.dr.ing. Anca Hangar	n	Semnatura
	Applications	Conf.dr.ing. Anca Hangar	n n Head of department	Semnatura
Date of approval i	Applications	Conf.dr.ing. Anca Hangar Conf.dr.ing. Anca Hangar	n Head of department Prof.dr.ing. Rodica Potolea	Semnatura

Date of approval in the Faculty Council

Dean Prof.dr.ing. Liviu Miclea