SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	53.

2. Data about the subject

2.1 Subject name			Inform	nformation Systems				
2.2 Course responsible/lecturer			Assoc.	Assoc. prof. dr. eng. Ovidiu Pop – Ovidiu.Pop@cs.utcluj.ro				
2.3 Teachers in charge of seminars/ Assoc. prof. dr. eng. Ovidiu Pop – Ovidiu.Pop@cs.utcluj.ro laboratory/ project								
2.4 Year of study	IV	2.5 Sem	ester	2	2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E		
DF – fundamer		fundamen	ıtală, DD	tală, DD – în domeniu, DS – de specialitate, DC – complementară				
2.7 Subject category	DI – II	mpusă, D(Op−opț	ionalč	í, DFac – facultativă	DI		

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per	ГС	ofwhich	Course	20	Cominara		Laboratory	20	Droject	
semester	50	or which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture materia	l and n	iotes, bibli	ography							20
(b) Supplementary study in the library, online and in the field							20			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							15			
(d) Tutoring										
(e) Exams and tests							5			
(f) Other activities:						9				
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2+3.4) 125										
3.6 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Software engineering, database design
4.2 Competence	Object-oriented design

5. Requirements (where appropriate)

5.1. For the course	50% (attendance)
5.2. For the applications	80% (attendance)

6. Specific competence

6.1 Professional competences	C4 - Improving the performances of the hardware, software and				
	communication systems (1 credit)				
	C4.1 - Identifying and describing the defining elements of the performances of				
	the hardware, software and communication systems				
	C4.2 - Explaining the interaction of the factors that determine the				
	performances of the hardware, software and communication systems				
	C4.3 - Applying the fundamental methods and principles for increasing the				
performances of the hardware, software and communication sy					

	C4.4 - Choosing the criteria and evaluation methods of the performances of			
	the hardware, software and communication systems			
	C4.5 - Developing professional solutions for hardware, software and			
	communication systems based on performance optimization			
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the			
	integrity of hardware, software and communication systems (1 credit)			
	C5.1 - Specifying the relevant criteria regarding the lifetime cycle quality			
	convity and the computing system's interaction with the opvironment and the			
	security and the computing system's interaction with the environment and the			
	numan operator			
	C5.2 - Using interdisciplinary knowledge for adapting the computing system to			
	the specific requirements of the application field			
	C5.3 - Using fundamental principles and methods for ensuring the security, the			
	safety and ease of exploitation of the computing systems			
	C5.4 - Proper utilization of the quality, safety and security standards in the field			
	of information processing			
	C5.5 - Creating a project including the problem's identification and analysis, its			
	design and development, also proving an understanding of the basic quality			
	requirements			
	C6 - Designing intelligent systems (2 credits)			
	C6.1 - Describing the components of intelligent systems			
	C6.2 - Using domain-specific tools for explaining and understanding the			
	functioning of intelligent systems			
	C6.3 - Applying the fundamental methods and principles			
	for specifying solutions for typical problems using intelligent systems			
	$\mathbf{C6.4}$ - Choosing the criteria and evaluation methods for the quality			
	nerformances and limitations of intelligent systems			
	C6 5 Doveloping and implementing professional projects for intelligent systems			
6.2 Cross competences	N/A			

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Improve requirements management and design abilities of students in their senior year.
7.2 Specific objectives	Apply RUP metholologies for requirements management and design patterns

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Requirements Maturity Management	2		
RUP – Overview and Best Practices	2		
RUP –Iterative Development	2		
The Requirements Discipline	2		
Capturing Requirements: Use Cases (I)	2		
Capturing Requirements: Use Cases (II) – Best Practices	2		
Analysis Model Artifacts: Vision, Glossary, Supplementary	2		
Specification (I)	2	Video presentation	
Analysis Model Artifacts: Vision, Glossary, Supplementary	2	video presentation	
Specification (II)	2		
Domain Model	2		
GRASP Design Patterns (I)	2		
GRASP Design Patterns (II)	2		
Use Case Realizations with GRASP Design Patterns (I)	2		
Use Case Realizations with GRASP Design Patterns (II)	2		
Use Case Realizations with GRASP Design Patterns (III)	2		
Bibliography			
1. Craig Larman – Applying UML and Patterns (2003)			

2. Alistair Cockburn – Writing Effective Use Cases (2002)				
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes	
Requirements Artifacts: Vision, Glossary, Supplementary	4			
Specification	-			
Generate a Vision document based on a RUP template	4	Students are		
Generate a Supplementary Specification document based on a RUP	Δ	their knowledge in		
template	-	inen knowledge in		
Requirements Artifacts: Use Cases	4	nnpiementation		
Generate a Use Case document based on a RUP template	4	projects		
Generate an Analysis Model	4			
Lab Assessment	4			
Bibliography				
1. Keneth Rubin – Essential Scrum (2012)				

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The knowledge gained overlapping demands of all IT employers.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade			
Course	Theory and problem solving	exam	90%			
Seminar						
Laboratory	Ability to apply theoretical knowledge	problem solving	10%			
Project						
Minimum standard of performance:						
Proven understand	Proven understanding of requirements artifacts and ability to generate a design model.					
Grade calculus: 90-% exam, 10% lab						
Conditions for participating in the final exam: Lab \geq 5						
Conditions for promotion: Grade ≥ 5						

Date of filling in:	Titulari Course	Titlu Prenume NUME Assoc. prof. dr. eng. Ovidiu Pop	Semnătura
	Applications	Assoc. prof. dr. eng. Ovidiu Pop	

Date of approval in the department

Head of department Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council

Dean Prof.dr.ing. Liviu Miclea