SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	54.1

2. Data about the subject

2.1 Subject name			Knowledge-Based Systems			
2.2 Course responsible/led	cture	•	Prof. dr. eng. Adrian Petru Groza – <u>Adrian.Groza@cs.utcluj.ro</u>			
2.3 Teachers in charge of s laboratory/ project	semir	iars/	Assoc. prof. dr. eng. Anca Marginean <u>Anca.Marginean@cs.utcluj.ro</u>			
2.4 Year of study	IV	2.5 Sem	ester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E	
2.7 Subject category DF – fundamer DI – Impusă, D		tală, DD – în domeniu, DS – de specialitate, DC – complementară			DS	
		DI – Impusă, DOp – opțională, DFac – facultativă				

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars	1	Laboratory	2	Project	
3.2 Number of hours per semester	70	of which:	Course	28	Seminars	14	Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture materia	land	notes, bibli	ography							25
(b) Supplementary study in	the li	brary, onlir	e and in	the f	ield					26
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					25					
(d) Tutoring										
(e) Exams and tests					4					
(f) Other activities:										
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 80										
3.5 Total hours per semester (3.2+3.4)150										
3.6 Number of credit points 6										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Artificial Intelligence, Intelligent Systems
4.2 Competence	Important material that you should have learned: first order logic, algorithm
	design, big-O complexity analysis, heuristic search, logic programming, machine
	learning. Useful skills that you should have: Linux, Latex, Python, Java
	programming languages. Functional and Logic programming is a plus.

5. Requirements (where appropriate)

5.1. For the course	Each student is required to enrol on the Moodle platform. By enrolling in this
	course, each student assumes the responsibility of an active participant in
	lecture and applications.
5.2. For the applications	

6. Specific competence

6.1 Professional competences	C3 - Problems solving using specific Computer Science and Computer
	Engineering tools (1 credit)
	C3.1 Identifying classes of problems and solving methods that are specific to

	computing systems
	C3.2 Using interdisciplinary knowledge, solution patterns and tools, making
	experiments and interpreting their results
	C3.3 Applying solution patterns using specific engineering tools and menous
	cs.4 comparatively and experimentary evaluation of the alternative solutions
	C3 5 Developing and implementing informatic solutions for concrete problems
	c Developing and implementing informatic solutions for concrete problems
	C5 -Designing, managing the lifetime cycle, integrating and ensuring the
	integrity of hardware, software and communication systems (1 credit)
	C5.1 Specifying the relevant criteria regarding the lifetime cycle, quality,
	security and computing system's interaction with the environment and human
	operator
	C5.2 Using interdisciplinary knowledge for adapting the computing system to
	the specific requirements of the application field
	C5.3 Using fundamental principles and methods for security, reliability and
	usability assurance of computing systems
	C5.4 Adequate utilization of quality, safety and security standards in
	information processing
	C5.5 Creating a project including the problem's identification and analysis, its
	design and development, also proving an understanding of the basic quality
	requirements
	C6 - Designing intelligent systems (2 credits)
	C6.1 Describing the components of intelligent systems
	C6.2 Using domain-specific tools for explaining and understanding the
	functioning of intelligent systems
	C6.3 Applying the fundamental methods and principles for specifying
	solutions for typical problems using intelligent
	C6.4 Choosing the criteria and evaluation methods for the quality,
	performances and limitations of intelligent systems
	C6.5 Developing and implementing professional projects for intelligent
	systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Understanding conceptual instrumentation for knowledge representation and reasoning
7.2 Specific objectives	Applying various knowledge-based techniques aiming to increase the quality of software systems

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
1.Introduction: application case analysis, representative scenarios from different domains, first order logic. Knowledge graphs	2		
2. Description logics: concepts, roles, instances, expressivity.	2	Slides,	
3. Reasoning in description logics. Tableaux-based algorithms	2	Warm-up examples,	
4. Ontology engineering: ontology design and evaluation	2	Quick individual work,	
5. Description Logic Programs. Natural Language Processing for	2	Open discussions,	
Description logics	Z	Round-up quizes	
6. Machine Learning for Description Logics	2	Student engagement	
7. Agents for Semantic Web. Jason programming language	2	techniques,	
8. Midterm assessment	2	Kahoot quizzes	
 Epistemic logics, dynamic epistemic logic, epistemic puzzles, applications 	2		

10. Model checking. Computational Tree Logic	2
11. Fuzzy systems: fuzzy sets, fuzzy inference, fuzzy expert systems. Fuzzy description Logic	2
12. Rule-based systems: representation, reasoning methods. Answer Set Programming	2
13. Non-monotonic reasoning	2
14. Student presentation: Ontology Building Competition	2

Bibliography

- 1. Hogan, Aidan, et al. "Knowledge graphs." ACM Computing Surveys (CSUR) 54.4 (2021): 1-37.
- F. Baader, W. Nutt, <u>Basic Description Logics</u>, Handbook of Description Logics, Cambridge University Press, May 20, 2010
- 3. Grosof, Benjamin N., et al. "<u>Description logic programs: Combining logic programs with description logic</u>." *Proceedings of the 12th international conference on World Wide Web.* ACM, 2003.
- 4. Grigoris Antoniou and Frank van Harmelen, A Semantic Web Primer, second edition, MIT Press, 2008
- 5. Horridge, Matthew, Bijan Parsia, and Ulrike Sattler. "<u>Explaining inconsistencies in OWL ontologies</u>." *Scalable Uncertainty Management*. Springer Berlin Heidelberg, 2009. 124-137.
- 6. Andries P. Engelbrecht, Computational Intelligence An Introduction, second edition, Wiley, 2007
- 7. Van Eijck and Verbrugge (eds.), <u>Discourses on Social Software</u>, Amsterdam University Press, 2009
- 8. Michael Huth and Mark Ryan, Logic in Computer Science- Modelling and reasoning about systems 2000; Cambridge University Press, 2000
- 9. Brachman, Ronald J., and Hector J. Levesque. "Knowledge representation and reasoning" *Morgan Kaufmann Publishers*, 2004
- 10. Groza, A. Modelling puzzles în First Order Logic, Springer Cham, 2021

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
1. Ontologies in KRSS syntax with RACER tool	2		
2. Semantic Web. Reusing ontologies. Ontology repositories	2		
3. Defining concepts	2		
4. Defining roles	2		
5. Populating ontologies.	2		
6. Rules on top of ontologies. Semantic Web Rule Language	2		
7. Ontology design patterns. Natural language processing for	2	Examples.	
ontologies. FRED tool	2	Assignments	
8. Querying ontologies. SPARQL	2		
9. Integrating ontologies with other applications. AgentSpeak	2		
programming language. JASON tool	2		
10. Ontology enrichment with Machine Learning. DLLearner tool	2		
11. Fuzzy knowledge. Fuzzy Description Logic. FuzzyDL tool	2		
12. Debugging ontologies. Ontology evaluation	2		
13. Documenting ontologies	2		
14. Ontology building competition. Student presentations	2		

Bibliography

1. Groza A. - Ontology Engineering with RACER - an activity based approach, UTPress, 2014

- 2. Haarslev, Volker, and Ralf Möller. "RACER User s Guide and Reference Manual Version 1.7. 7." Concordia University and Univ. of Appl. Sciences in Wedel (2003).
- 3. Bordini, Rafael H., Jomi Fred Hübner, and Michael Wooldridge. *Programming multi-agent systems in AgentSpeak using Jason*. Vol. 8. John Wiley & Sons, 2007.
- 4. Draicchio, Francesco, et al. "Fred: From natural language text to rdf and owl in one click." *Extended Semantic Web Conference*. Springer, Berlin, Heidelberg, 2013.

- 5. Draicchio, Francesco, et al. "Fred: From natural language text to rdf and owl in one click." *Extended Semantic Web Conference*. Springer, Berlin, Heidelberg, 2013.
- 6. Bobillo, Fernando, and Umberto Straccia. "The fuzzy ontology reasoner fuzzyDL." *Knowledge-Based Systems* 95 (2016): 12-34.
- 7. Draicchio, Francesco, et al. "FRED: From natural language text to RDF and OWL in one click." *Extended Semantic Web Conference*. Springer, Berlin, Heidelberg, 2013.

 * Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course organisation and its requiments follow the ACM guidelines and exemplary courses listed by ACM/IEEE Computer Science 2013 Exemplar-Fest

Employers in the field benefit from having a student more orientend towards increasing software quality.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Understanding conceptual instrumentation for knowledge representation and reasoning, Class participation, Assignments	Midterm assessment, Exam (Moodle)	70%
Seminar			
Laboratory	Ontology evaluation metrics, Meeting deadlines, P\public presentation skills, Technical writing skills	Lab project assessment (Moodle)	30%
Project			
Minimum standard	l of performance.		

Understanding description logics, computational tree logic and rule-based systems. Meeting deadlines. Engineering a decent ontology.

Grade calculus: 0.2 * midterm + 0.3 * lab + 0.5 * exam

Conditions for participating in the final exam: Lab ≥ 5

Conditions for promotion: Grade \geq 5

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof. Dr .eng. Adrian Groza	
	Applications	Assoc.prof.dr. Anca Marginean	

Date of approval in the department	Head of department Prof.dr.ing. Rodica Potolea
Date of approval in the Faculty Council	Dean Prof.dr.ing. Liviu Miclea