SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	31.

2. Data about the subject

2.1 Subject name			Structi	ure o	f Computer Systems	
2.2 Course responsible/le	cturer	-	Prof. d	r. ing	g. Gheorghe Sebestyen – <u>Gheorghe.Sebestyen@cs.utcluj.ro</u>	
2.3 Teachers in charge of laboratory/ project	semin	ars/	Conf.d	r.ing.	. Anca Hangan, S.I.dr.ing. Madalin Neagu ing. Tudor Coroian	1
2.4 Year of study	Ш	2.5 Sem	ester		2.6 Type of assessment (E - exam, C - colloquium, V - verification)	Е
2.7 Cubicat astagamı	DF – j	fundamen	itală, DD	– în d	domeniu, DS – de specialitate, DC – complementară	DD
2.7 Subject category	DI – II	mpusă, Di	Op – opț	ionald	ă, DFac – facultativă	DI

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars		Laboratory	2	Project	1
3.2 Number of hours per	70	of which:	Course	28	Seminars		Laboratory	28	Project	14
semester	70	OI WILICII.	Course	20	Seminars		Laboratory	20	Froject	14
3.3 Individual study:										
(a) Manual, lecture materia	I and n	otes, bibli	ography							20
(b) Supplementary study in	the lib	rary, onlin	e and in	the fi	eld					17
(c) Preparation for seminars	s/labor	atory wor	ks, home	work	, reports, p	ortfo	lios, essays			15
(d) Tutoring										0
(e) Exams and tests										3
(f) Other activities:										0

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	55
3.5 Total hours per semester (3.2+3.4)	125
3.6 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 Curriculum	Digital system design, Computer architecture
4.2 Competence	Understand and operate with basic concepts regarding computer system's
	hardware

5. Requirements (where appropriate)

5.1. For the course	
5.2. For the applications	

6. Specific competence

6.1 Professional competences	C2 – Designing hardware, software and communication components (5 credits)
	C2.1 – Describing the structure and functioning of computational,
	communication and software components and systems
	C2.2 – Explaining the role, interaction and functioning of hardware, software
	and communication components
	C2.3 – Building the hardware and software components of some computing
	systems using algorithms, design methods, protocols, languages, data

	structures, and technologies C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using specific metrics C2.5 – Implementing hardware, software and communication systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	The main goal of the course is to present in an accessible way advanced design methods and techniques used in today's microprocessors and computer systems
7.2 Specific objectives	To study: Methods and metrics for computer performance assessment Advanced CPU designs (pipelining, multicore, parallele and distributed computing) Memory hierarchies: cache memory, virtual memory, new DRAM technologies RISC architecture Parallel computers architectures – hardware issues and solutions

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction. Computer Performance Parameters and Methods of Improvement	2		
Computer performance and optimality, Benchmarking	2		
The Arithmetical and Logical Unit (ALU)	2		
The Central Processing Unit (CPU) – MIPS architecture, pipeline, hazard cases	2		
The Central Processing Unit – advance techniques: Scoreboard method, Tomasulo's algorithm, Branch prediction techniques	2	Lecture based on	
The Central Processing Unit – multi-core systems	2	slides, onsite or	
Microprocessors – basic components and advanced implementations	2	online (depending on the medical	
Memory System – memory technologies (SRAM, DRAM) and design principles	2	tools used: MS	
Memory Hierarchies – cache and virtual memory	2	PowerPoint, Teams, Moodle	
Interconnection Systems – serial and parallel synchronous and asynchronous buses, multipoint interconnections	2	Woodie	
Parallel Computer Architectures - different levels of parallel execution	2		
RISC Architectures – principles and implementation examples	2]	
Distributed Computing – GRID and Cloud Systems	2]	
Technological Perspectives in Computer Architectures	2		

Bibliography

- 1. Gorgan Dorian, Sebestyen Gheorghe, Structura Calculatoarelor, Editura albastra, Cluj-Napoca 2005
- 2. Hennessy John, Patterson David, Computer architecture, a Quantitative Approach, Ed. Elsevier, 2007
- Baruch, Z. F., Structure of Computer Systems, U.T.PRES, Cluj-Napoca, 2002, ISBN 973-8335-44-2.

 Hours Teaching methods

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Measuring the performance of computer systems with benchmarks	2		
CPU performance monitoring using the Time-Stamp Counter register	2	Practical designs, experiments and	
Programming elements in VHDL	2	results assessment,	
Design of ALU components	2	onsite or online	
FPGA Synthesis	2	(depending on the	
Introduction to using PicoBlaze microcontroller with the Nexys3 board	2	medical conditions) tools used: MS	
Implementation of a MIPS processor in VHDL - 1	2	Teams, Moodle	
Implementation of a MIPS processor in VHDL - 2	2		

Implementation of a pipelined MIPS processor in VHDL	2
Memory design - 1	2
Memory design - 2	2
Advanced Hardware Design Techniques	2
Design implementations on NEXYS 3 board	2
Laboratory Colloquy	2
Topics for Project Assignments: Implementation of arithmetic	
circuits; Design and implementation of processors and controllers;	
Signal Processing; Hardware implementation of DSP and image	
processing algorithms; Design of I/O interfaces.	
Bibliography	
Laboratory works at http://users.utcluj.ro/~ancapop/scs.html	

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Theoretical knowledge level	Written exam, onsite or online (depending on the medical conditions); tools used: MS Teams, Moodle	60%
Seminar			
Laboratory Project	Hardware Design skills	Practical evaluation, onsite or online (depending on the medical conditions) tools used: MS Teams, Moodle	40%

Minimum standard of performance:

Minimum 5 for the Course and for the Application assessment

Grade calculus: 30% midterm + 20% laboratory + 20% project + 30% final exam Conditions for participating in the final exam: Laboratory \geq 5, Project \geq 5

Conditions for promotion: final grade ≥ 5

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof. dr. ing. Gheorghe Sebestyen	
	Applications	Conf. Dr. Ing. Anca Hangan	
		S.I. Dr. Ing. Madalin Neagu Ing. Tudor Coroian	

Date of approval in the department	Head of department Prof.dr.ing. Rodica Potolea
Date of approval in the Faculty Council	Dean Prof.dr.ing. Liviu Miclea