SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	30.

2. Data about the subject

2.1 Subject name			Design with Microprocessors				
2.2 Course responsible/l	ecturer	r Prof. dr. ing. Radu Danescu – <u>radu.danescu@cs.utcluj.ro</u>					
2.3 Teachers in charge or laboratory/ project	f semin	inars/ Conf.dr.ing. Mihai Negru – <u>Mihai.Negru@cs.utcluj.ro</u> S.I. dr. ing. Razvan Itu - <u>Razvan.Itu@cs.utcluj.ro</u>					
2.4 Year of study	ш	2.5 Sem		2.6 Type of assessment (E - exam. C - colloquium. V -			
DF – fundamer		ntală, DD – în domeniu, DS – de specialitate, DC – complementară			DD		
2.7 Subject category	DI – I	mpusă, D	Op – opț	ionald	ă, DFac – facultativă	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	1	Project	1
3.2 Number of hours per	56	of which:	Course	28	Cominara		Laboratory	1.4	Droject	14
semester	50	or which:	Course	28	Seminars		Laboratory	14	Project	14
3.3 Individual study:										
(a) Manual, lecture materia	l and r	otes, bibli	ography							23
(b) Supplementary study in the library, online and in the field							14			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							28			
(d) Tutoring								0		
(e) Exams and tests							4			
(f) Other activities:							0			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2+3.4) 125										
3.6 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer Architecture, Computer Programming
4.2 Competence	Hardware design, Assembly language programming, C language programming

5. Requirements (where appropriate)

5.1. For the course	Black-board/ White-board, projector, computer
5.2. For the applications	Computer, Atmel Studio, Arduino IDE, Arduino & RPi development boards,
	Pmods and several other components, modules, sensors etc.

6. Specific competence

6.1 Professional competences	 C2 – Designing hardware, software and communication components (2 credits) C2.1 - Describing the structure and operation of hardware, software and
	communication components
	C2.2 - Explaining the role, interaction and operation of hardware, software and
	communication components
	C2.3 - Construction of hardware and software components of computing
	systems using design methods, languages, algorithms, data structures,

	protocols and technologies
	C2.4 - Metric based evaluation of functional and non-functional characteristics
	of computing systems
	C2.5 - Implementation of hardware, software and communication components
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the
	integrity of hardware, software and communication systems (3 credits)
	C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality,
	security and computing system's interaction with the environment and human
	operator
	C5.2 - Using interdisciplinary knowledge for adapting an information system to
	application domain requirements
	C5.3 - Using fundamental principles and methods for security, reliability and
	usability assurance of computing systems
	C5.4 - Adequate utilization of quality, safety and security standards in
	information processing
	C5.5 - Realization of a project including problem identification and analysis,
	design and development, while proving the understanding of the basic quality
	needs and requirements
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Knowledge, understanding and use of concepts like microprocessor/ microcontroller, bus, memory system, data transfer methods, interface circuits and peripheral devices interfacing, analysis and design of microprocessor systems.
7.2 Specific objectives	 To achieve the main objective, specific objectives are pursued: Knowledge of microprocessors and microcontrollers features and capabilities: hardware capabilities, instruction set architecture, assembly language, and programming solutions. Knowledge of hardware components used with the microprocessors: electrical and logical characteristics, connection modes. Development of skills to find solutions based on microprocessors or microcontrollers for real problems with average complexity. Acquaintance with microcontroller development boards and their software programming tools.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Lecture Overview. Introduction to MP based systems (AVR MCU family)			
AVR registers and instructions	2		
AVR I/O ports and interrupts	2		
Input/output and interrupts for Arduino systems	2	Oral, blackboard and	
AVR timers. Timing events with Arduino	2	multimedia,	
Serial data communication. Serial data transfer with Arduino	2	interactive teaching	
Analog signals processing	2	style, consultations,	
Microcontroller based applications: usage of sensors	2	involvement of	
Microcontroller based applications: usage of actuators		students in research /	
Introduction to the 8086 microprocessor family	2	design.	
I/O transfer	2		
8086 – the interrupt system	2		
8086 – memory interfacing	2		
DRAM memories. The DMA transfer	2		
Bibliography	·		-
1. B. B. Brey, "INTEL Microprocessors 8086/8088, 80186/80188,	80286, 803	86, 80486, Pentium, Pren	tium

ProProcessor, Pentium II, III, 4", ed. 7, Prentice Hall, 2005

2. S. Nedevschi, "Microprocesoare", Editura UTCN, 1994.

- 3. M.A. Mazidi, S. Naimi, S. Naimi, AVR Microcontroller and Embedded Systems: Using Assembly and C, Prentice Hall, 2010, ISBN 9780138003319.
- 4. M. Margolis, Arduino Cookbook, 2-nd Edition, O'Reilly, 2012.

Online:

5. <u>http://users.utcluj.ro/~rdanescu/teaching_pmp.html</u>

6. http://users.utcluj.ro/~negrum/index.php/home/design-with-microprocessors/

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Laboratory			•
Introduction to the Arduino boards.	1		
Applications with simple I/O modules	1	Presentation on the	
Working with the LCD shield and the interrupt system	1	blackboard,	
Usage of timers	1	experiments on	
Communication interfaces	1	microcontroller	
Digital sensors. Analogue keypad	1	development boards	
Analogue signals processing.	1	(Arduino, Raspberry	
Project	•	PI, peripherals,	
Project specification	1	sensors), use of specialized IDE design	
Study of the required technologies	1	tools (Arduino IDE,	
Logic design of the solution.	1	Atmel studio),	
Implementation of the solution.	1	involvement of	
Implementation of the solution.	1	students in research /	
Optimization, testing and validation.	1	design.	
Project assessment.	1		
Bibliography			

Bibliography

1. Atmel ATmega2560 - 8 bit AVR Microcontroller datasheet, <u>http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf</u>

- 2. Arduino Mega 2560, http://arduino.cc/en/Main/ArduinoBoardMega2560
- 3. Abdul Maalik Khan, AVR Project Book, <u>http://www.digisoft.com.pk/products/avr-project-book</u>
- 4. Mike McRoberts, Beginning Arduino, 2-nd Edition, Technology in Action.
- 5. M. Margolis, Arduino Cookbook, 2-nd Edition, O'Reilly, 2012.

Online: http://users.utcluj.ro/~rdanescu/teaching pmp.html

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course is in the Computer and Information Technology field. Its contents combine fundamentals with specific aspects of the used hardware and software tools, accustoming students with the design principles for microprocessor based systems. The course content was discussed with other universities in the country and abroad, and in conjunction with products /development tools offered by companies in Romania, Europe and the USA (e.g. Digilent, Atmel, Arduino, RaspberyPi) and is rated by the Romanian government agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Testing theoretical knowledge and problem solving skills	Onsite: Written exam Online: Test over Moodle/MS Teams audio-video (or equivalent software), oral (shared screen / audio / video)	50 %
Seminar			
Laboratory Project	Practical skills for problem solving and implementation of specific problems for applications design. Attendance and activity	Continuous evaluation of the laboratory work, continuous and final evaluation of the project	50 %

Modeling and implementation of typical engineering problems using the theoretical models and applicative tools

specific to the domain. Grade computation: 25% laboratory + 25% project + 50% final exam Conditions for participating in the final exam: Laboratory \geq 5, Project \geq 5 Conditions for passing: final exam \geq 5

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof.dr.ing. Radu Danescu	
	Applications	Conf.dr.ing. Mihai Negru	
		S.I. dr. ing. Razvan Itu	
Date of approval in	the department	Head of department	
		Prof.dr.ing. Rodica Potolea	

Date of approval in the Faculty Council

Dean Prof.dr.ing. Liviu Miclea