SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	2.

2. Data about the subject

2.1 Subject name			Linear	Alge	bra	
2.2 Course responsible/le	cturer	-	Prof. d	r. Ioa	n Radu Peter <u>ioan.radu.peter@math.utcluj.ro</u>	
2.3 Teachers in charge of laboratory/ project	semin	ars/	Conf. o	dr. Da	ilia Cimpean <u>Dalia.Cimpean@math.utcluj.ro</u>	
2.4 Year of study	ı	2.5 Sem	ester		2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E
2.7 Cubicat astanam	DF – j	fundamen	tală, DD	– în c	domeniu, DS – de specialitate, DC – complementară	DF
2.7 Subject category	DI – II	mpusă, D	Эр – орț	ionalč	й, DFac – facultativă	DD

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	2	Laboratory	Project	
3.2 Number of hours per	56	of which:	Course	28	Seminars	28	Laboratory	Droject	
semester	50	or which:	Course	28	Seminars	28	Laboratory	Project	
3.3 Individual study:									
(a) Manual, lecture materia	l and n	otes, bibli	ography						20
(b) Supplementary study in	the lib	rary, onlir	e and in	the f	eld				4
(c) Preparation for seminar	s/labor	atory wor	ks, home	work	, reports, p	ortfo	lios, essays		17
(d) Tutoring									
(e) Exams and tests									3
(f) Other activities:									0
	_								

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Basic knowledge of Linear Algebra and Analytic Geometry
4.2 Competence	Competences in elementary Linear Algebra and Analytic Geometry: matrices,
	determinants, linear systems, vectors and lines in plane

5. Requirements (where appropriate)

5.1. For the course	Blackboard, videoprojector
5.2. For the applications	Blackboard, videoprojector

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science
	concepts
	C1.1 - Recognizing and describing specific concepts to calculability, complexity,
	programming paradigms and modeling of computing and communication
	systems
	C1.2 - Using specific theories and tools (algorithms, schemes, models,
	protocols, etc.) for explaining the structure and the functioning of hardware,

	software and communication systems
	C1.3 - Building models for various components of computing systems
	, , , , , , , , , , , , , , , , , , , ,
	C1.4 - Formal evaluation of the functional and non-functional characteristics of
	computing systems
	C1.5 - Providing theoretical background for the characteristics of the designed
	systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

	, , , , , , , , , , , , , , , , , , , ,
7.1 General objective	A presentation of the concepts, notions, methods and fundamental techniques used in linear algebra and analytic geometry.
7.2 Specific objectives	Use of the matriceal calculus (in the general context of linear algebra) in order to solve problems in engineering. Use of the vectorial calculus (in the general context of analytic geometry) in modelling and solving practical problems concerning spatial forms.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Linear spaces. Definition. Linear subspaces. Examples.	2		
Linear independence. Basis. Dimension. Change of basis.	2		
Inner - product spaces. Definition, properties, Schwarz' inequality. Examples	2		
Linear transformations. Definition, elementary properties, Kernel and Image.	2		
The matrix associated to a linear transformation. The standard construction. Expresions in terms of coordinates.	2	_	
Eigenvalues and eigenvectors. Definitions, invariant subspaces, characteristic polynomials.	2	Explanation	
The diagonal form. Canonical forms, diagonalizability.	2	Demonstration	
The Jordan canonical form. Construction of a Jordan basis and a Jordan matrix.	2	Collaboration	
Functions of a matrix. The n-th power of a matrix. Elementary functions of a matrix.	2	Interactive activities	
The adjoint operator. Definition, properties, examples.	2		
Self-adjoint operators, unitary operators, properties of the eigenvalues and eigenvectors.	2		
Bilinear forms, quadratic forms. The associated matrix.	2		
The canonical form. Reduction to a canonical form. The method of eigenvalues and Jacobi's method.	2		
Conics and quadrics. Reduction to a canonical form. Geometric properties.	2		

Bibliography

- 1. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
- 2. V. Pop, I. Rasa, Linear Algebra with Applications to Markov Chains, Ed. Mediamira, 2005

1, ,			
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Determinants, matrices, geometric vectors	2		
Linear spaces, bases, dimension	2		
Inner-product spaces	2	Explanation	
Linear transformations. Examples	2]	
Linear transformations characterized in terms of matrices	2	Demonstration	
Invariant subspaces, eigenvalues, eigenvectors	2		
Diagonalizable linear transformations	2	Collaboration	
Jordan bases, Jordan canonical forms	2		
Elementary functions of a matrix, examples	2	Interactive activities	
The adjoint operator	2		
Special classes of operators	2		

Bilinear forms, quadratic forms	2	
Reduction to a canonical form	2	
Conics and quadrics, reduction to a canonical form	2	

Bibliography

- 1. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
- 2. V. Pop, I. Corovei, Algebra pentru ingineri. Culegere de probleme, Ed. Mediamira, 2003.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Abilities of understanding and using creatively the concepts and proofs	Written examination	30%		
Seminar	Abilities of solving problems and applying algorithms	Written examination	70%		
Laboratory					
Project					
Minimum standard of performance:					

Ability to present coherently a theoretical subject and to solve problems with practical content.

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof.dr. Ioan Radu Peter	
	Applications	Conf. dr. Dalia Campean	

Date of approval in the department	Head of department Prof.dr.ing. Rodica Potolea
Date of approval in the Faculty Council	Dean Prof.dr.ing. Liviu Miclea

[.] Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.