SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	2.

2. Data about the subject

2.1 Subject name			Linear Algebra		
2.2 Course responsible/lecturer			Prof. dr. Ioan Radu Peter ioan.radu.peter@math.utcluj.ro		
2.3 Teachers in charge of seminars/ laboratory/ project			Conf. dr. Dalia Cimpean Dalia.Cimpean@math.utcluj.ro		
2.4 Year of study	I	2.5 Semester	1	2.6 Type of assessment (E - exam, C - colloquium, V verification)	E
2.7 Subject category	DF - fundamentală, DD - în domeniu, DS - de specialitate, DC - complementară				DF
	DI - Impusă, DOp - opțională, DFac - facultativă				DD

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	2	Laboratory	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars	28	Laboratory	Project	
3.3 Individual study:									
(a) Manual, lecture material and notes, bibliography									20
(b) Supplementary study in the library, online and in the field									4
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays									17
(d) Tutoring									
(e) Exams and tests									3
(f) Other activities:									0

3.4 Total hours of individual study (suma (3.3(a)...3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Basic knowledge of Linear Algebra and Analytic Geometry
4.2 Competence	Competences in elementary Linear Algebra and Analytic Geometry: matrices, determinants, linear systems, vectors and lines in plane

5. Requirements (where appropriate)

5.1. For the course	Blackboard, videoprojector
5.2. For the applications	Blackboard, videoprojector

6. Specific competence

6.1 Professional competences

C1 - Operating with basic Mathematical, Engineering and Computer Science concepts
C1.1 - Recognizing and describing specific concepts to calculability, complexity, programming paradigms and modeling of computing and communication systems
C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware,

	software and communication systems
	C1.3 - Building models for various components of computing systems
	C1.4 - Formal evaluation of the functional and non-functional characteristics of
	computing systems
	C1.5 - Providing theoretical background for the characteristics of the designed
	systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	A presentation of the concepts, notions, methods and fundamental techniques used in linear algebra and analytic geometry.
7.2 Specific objectives	Use of the matriceal calculus (in the general context of linear algebra) in order to solve problems in engineering. Use of the vectorial calculus (in the general context of analytic geometry) in modelling and solving practical problems concerning spatial forms.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Linear spaces. Definition. Linear subspaces. Examples.	2	Explanation	
Linear independence. Basis. Dimension. Change of basis.	2		
Inner - product spaces. Definition, properties, Schwarz' inequality. Examples	2		
Linear transformations. Definition, elementary properties, Kernel and Image.	2		
The matrix associated to a linear transformation. The standard construction. Expresions in terms of coordinates.	2		
Eigenvalues and eigenvectors. Definitions, invariant subspaces, characteristic polynomials.	2		
The diagonal form. Canonical forms, diagonalizability.	2		
The Jordan canonical form. Construction of a Jordan basis and a Jordan matrix.	2	Demonstration	
Functions of a matrix. The n-th power of a matrix. Elementary functions of a matrix.	2	Interactive activities	
The adjoint operator. Definition, properties, examples.	2		
Self-adjoint operators, unitary operators, properties of the eigenvalues and eigenvectors.	2		
Bilinear forms, quadratic forms. The associated matrix.	2		
The canonical form. Reduction to a canonical form. The method of eigenvalues and Jacobi's method.	2		
Conics and quadrics. Reduction to a canonical form. Geometric properties.	2		

Bibliography

1. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
2. V. Pop, I. Rasa, Linear Algebra with Applications to Markov Chains, Ed. Mediamira, 2005

8.2 Applications - Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Determinants, matrices, geometric vectors	2	Explanation	
Linear spaces, bases, dimension	2		
Inner-product spaces	2		
Linear transformations. Examples	2		
Linear transformations characterized in terms of matrices	2	Demonstration	
Invariant subspaces, eigenvalues, eigenvectors	2		
Diagonalizable linear transformations	2	Collaboration	
Jordan bases, Jordan canonical forms	2		
Elementary functions of a matrix, examples	2	Interactive activities	
The adjoint operator	2		
Special classes of operators	2		

Bilinear forms, quadratic forms	2		
Reduction to a canonical form	2		
Conics and quadrics, reduction to a canonical form	2		

Bibliography

1. D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analytic Geometry, Ed. Mediamira, 2012
2. V. Pop, I. Corovei, Algebra pentru ingineri. Culegere de probleme, Ed. Mediamira, 2003.

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.
9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field
Collaboration with engineers in order to identify and solve problems raised by the market.
10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade	
Course	Abilities of understanding and using creatively the concepts and proofs	Written examination	30%	
Seminar	Abilities of solving problems and applying algorithms	Written examination	70%	
Laboratory				
Project				
Minimum standard of performance: Ability to present coherently a theoretical subject and to solve problems with practical content.				

Date of filling in:	Titulari Course	Titlu Prenume NUME Prof.dr. Ioan Radu Peter	Semnătura
	Applications	Conf. dr. Dalia Campean	

Date of approval in the department
Head of department Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council

Dean
Prof.dr.ing. Liviu Miclea

