SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	24.

2. Data about the subject

2.1 Subject name Numerical methods					
2.2 Course responsible/lecturer Prof. dr. Dumitru Mircea Ivan – <u>mircea.ivan@math.utcluj.ro</u>					
2.3 Teachers in charge of a laboratory/ project	3 Teachers in charge of seminars/ Prof. dr. Daniela ROSCA – <u>daniela.rosca@math.utcluj.ro</u> boratory/ project				
2.4 Year of study	II	2.5 Sem	ester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară			DF		
2.7 Subject category DI – Impusă, DO		Op – opț	ionalč	ĭ, DFac – facultativă	DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars	Laboratory	28	Project	
3.3 Individual study:									
(a) Manual, lecture materia	l and n	otes, bibli	ography						15
(b) Supplementary study in the library, online and in the field						10			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						15			
(d) Tutoring						0			
(e) Exams and tests						4			
(f) Other activities:						0			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 44									
3.5 Total hours per semester (3.2+3.4) 100									
3.6 Number of credit points 4									

4. Pre-requisites (where appropriate)

4.1 Curriculum	Basic knowledge of Differential and Integral Calculus
4.2 Competence	Competences in elementary Differential and Integral Calculus: derivatives,
	integrals, series

5. Requirements (where appropriate)

5.1. For the course	
5.2. For the applications	

6. Specific competence

6.1 Professional competences	 C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (5 credits) C1.1 - Recognizing and describing specific concepts to calculability, complexity, programming paradigms and modeling of computing and communication systems C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware,
------------------------------	---

	software and communication systems C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	A presentation of the concepts, notions, methods and fundamental techniques used in differential calculus.
7.2 Specific objectives	Use of the differential calculus in order to solve problems in engineering.

8. Contents

o. contents	1		1
8.1 Lectures	Hours	Teaching methods	Notes
Elements of Error Theory. Floating Point Arithmetic. Absolute and	2		
Relative Errors.			
Numerical Methods in Linear Algebra. Special Types of Matrices.	4		
Norms of Vectors and Matrices. Eigenvalues and Eigenvectors.			
Error Estimation. Matrix Equations. Pivoting Elimination. Improved			
Solutions of Matrix Equations. Partitioning Methods for Matrix			
Inversion. LU Factorization. Doolittle's Factorization. Choleski's			
Factorization Method. Iterative Techniques for Solving Linear			
Systems. Jacobi Iterative Method. Gauss-Seidel Iterative Method.			
Relaxation Methods. Characteristic Polynomial: Leverrier Method.			
Characteristic Polynomial: Fadeev-Frame Method.			
Solutions of Nonlinear Equations. Method of Successive	4		
Approximation. The Bisection Method. The Newton-Raphson			
Method. The Secant Method. False Position Method. The			
Chebyshev Method. Numerical Solutions of Nonlinear Systems of			
Equations. Newton's Method for Systems of Nonlinear Equations.			
Steepest Descent Method.		Explanation	
Elements of Interpolation Theory. Lagrange Interpolation. Divided	6		
Difference. Mean Value Properties in Lagrange Interpolation.		Demonstration	
Approximation by Interpolation. Hermite Interpolating Polynomial.			
Finite Differences. Interpolation of Multivariable Functions.		Collaboration	
Scattered Data Interpolation. Shepard's Method. Splines. B-splines.			
Elements of Numerical Integration. Richardson's Extrapolation.	4	Interactive activities	
Numerical Quadrature. Error Bounds in the Quadrature Methods.			
Trapezoidal Rule. Richardson's Deferred Approach to the Limit.			
Romberg Integration. Newton-Cotes Formulas. Simpson's Rule.			
Gaussian Quadrature.			
Elements of Approximation Theory. Discrete Least Squares	4		
Approximation. Orthogonal Polynomials and Least Squares			
Approximation. Rational Function Approximation. Padé			
Approximation. Trigonometric Polynomial Approximation. Fast			
Fourier Transform. Bernstein Polynomial. Bézier Curves.			
METAFONT.			
Integration of Ordinary/Partial Differential Equations. The Euler	4		
Method. The Taylor Series Method. The Runge-Kutta Method. The			
Runge-Kutta Method for Systems of Equations. Integration of			
Partial Differential Equations. Parabolic Partial-Differential			
Equations. Hyperbolic Partial Differential Equations. Elliptic Partial			
Differential Equations.			
Bibliography			

1. Dumitru Mircea Ivan. Calculus. Editura Mediamira, Cluj-Napoca, 2002. ISBN 973-9358-88-8.

2. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca, 2003. ISBN

973-9357-41-5.

3. Ioan-Adrian Viorel, Dumitru Mircea Ivan, and Loránd Szabó. Metode numerice cu aplicații în ingineria electrică. Editura Universității din Oradea,

4. Mircea Ivan and Kálmán Pusztai. Mathematics by Computer. Comprex Publishing House, Cluj-Napoca, 1992.						
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes			

		Explanation
The applications follow the topics of the courses.	28	Demonstration
The applications follow the topics of the courses.	20	Collaboration
		Interactive activities

Bibliography

- 1. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca, 2003. ISBN 973-9357-41-5.
- 2. Ioan-Adrian Viorel, Dumitru Mircea Ivan, and Loránd Szabó. Metode numerice cu aplicații în ingineria electrică. Editura Universității din Oradea,

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Abilities of understanding and using creatively the concepts and proofs	Written examination	30%		
Seminar					
Laboratory	Abilities of solving problems and applying algorithms	Written examination	70%		
Project					
Minimum standard of performance:					

Ability to present coherently a theoretical subject and to solve problems with practical content.

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof.dr. Dumitru Mircea IVAN	
	Applications		
	Applications	Prof. dr. Daniela ROSCA	

Date of approval in the department

Head of department Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council

Dean Prof.dr.ing. Liviu Miclea