SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	23.

2. Data about the subject

2.1 Subject name			Computer Architecture			
2.2 Course responsible/lee	cturer	•	Conf.dr.ing. Mihai Negru – <u>Mihai.Negru@cs.utcluj.ro</u>			
2.3 Teachers in charge of a laboratory/ project	semin	ars/	Conf.dr. ing. Florin Oniga, Conf.dr.ing. Mihai Negru, { Florin.Oniga, Mihai.Negru }@cs.utcluj.ro			
2.4 Year of study	П	2.5 Sem	ester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E	
DF-		DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară			domeniu, DS – de specialitate, DC – complementară	DD
2.7 Subject category	DI – I) I – Impusă, DOp – opțională, DFac – facultativă				DI

3. Estimated total time

2.1 Number of bours per week	Λ	ofwhich	Course	2	Sominars	Laboratory	2	Project	
S.1 Number of hours per week	4	or writeri.	Course	2	Seminars	Laboratory	2	FIOJECT	
3.2 Number of hours per	ГС	ofwhich	Course	20	Cominara	Laboratory	20	Droiget	
semester	50	or which:	Course	28	Seminars	Laboratory	28	Project	
3.3 Individual study:									
(a) Manual, lecture materia	l and n	otes, bibli	ography						28
(b) Supplementary study in the library, online and in the field						14			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						23			
(d) Tutoring						0			
(e) Exams and tests						4			
(f) Other activities:						0			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 69									
3.5 Total hours per semester (3.2-	+3.4)				125				
3.6 Number of credit points 5									

4. Pre-requisites (where appropriate)

4.1 Curriculum	Logic design >= 5 Digital system design >= 5
4.2 Competence	Ability to design digital circuits and to implement them in VHDL

5. Requirements (where appropriate)

5.1. For the course	blackboard, video projector, laptop
5.2. For the applications	desktop/laptop computer, Xilinx ISE / VIVADO, FPGA development boards

6. Specific competence

6.1 Professional competences	C2 – Designing hardware, software and communication components (5 credits)					
	C2.1 – Describing the structure and functioning of computational,					
	communication and software components and systems					
	C2.2 – Explaining the role, interaction and functioning of hardware, software					
	and communication components					
	C2.3 – Building the hardware and software components of some computing					
	systems using algorithms, design methods, protocols, languages, data					

	structures, and technologies C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
	C2.5 – Implementing hardware, software and communication systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Knowing and understanding the concepts of organization and functioning for central processing units, memories, input/output, and using these concepts for design.
7.2 Specific objectives	 Applying methods for representation and design at system level for digital circuits Instruction Set Architecture (ISA) specification Writing simple programs in assembly languages and machine code Specification, design, implementation, and testing of Central Processing Units (CPU) – micro architecture – data path – command units Understanding memory organization and I/O operations Understanding modern trends in computer architectures

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction	2		
High-Level Synthesis	2		
Instruction Set Architecture (ISA)	2		
CPU Design - Single Cycle CPU	2		
Computer Arithmetic and Simple Arithmetic Logic Units	2	Oral presentation	
CPU Design - Multi Cycle CPU Data path	2	backed up by	
CPU Design - Multi Cycle CPU Control	2	multimedia equipment,	
CPU Design – Pipelined CPU	2	communication	
Advanced Pipelining – Static and Dynamic Scheduling of the	2	blackhoard problem	
Execution	Z	solving	
Branch Prediction	2	5014115	
Superscalar Architectures	2		
Memory	2		
I/O and Interconnection Structures	2		
Problem solving	2		

Bibliography

1. D. A. Patterson, J. L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface", 5th edition, ed. Morgan–Kaufmann, 2013.

- D. A. Patterson and J. L. Hennessy, "Computer Organization and Design: A Quantitative Approach",5th edition, ed. Morgan-Kaufmann, 2011.
- 3. Vincent P. Heuring, et al., "Computer Systems Design and Architecture", Addison-Wesley, USA, 1997.
- 4. A. Tanenbaum, "Structured Computer Organization", Prentice Hall, USA, 1999.
- 5. MIPS32 Architecture for Programmers, Volume I: "Introduction to the MIPS 32[™] Architecture".
- 6. MIPS32 Architecture for Programmers, Volume II: "The MIPS 32™ Instruction Set".

Online bibliography

M. Negru, F. Oniga, S. Nedevschi, Lecture slides <u>http://users.utcluj.ro/~negrum</u>

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction in the Xilinx ISE environment and the FPGA development board	2	Blackboard quick overview of key issues,	
Design and Implementation of Combinational CPU Components	2	exercises,	
Design and Implementation of Sequential CPU Components	2	experimenting with	
Design of a Single Cycle CPU 1 (MIPS)	2	FPGA development	
Design of a Single Cycle CPU 2 (MIPS)	2	boards with specialized	
Design of a Single Cycle CPU 3 (MIPS)	2	IDEs for circuit design	

Design of a Single Cycle CPU 4 (MIPS)	2	and implementation			
Midterm practical evaluation on the FPGA board	2	(Xilinx ISE)			
Pipelined CPU Design	2				
Pipelined CPU Design	2				
Pipelined CPU Design	2				
Pipelined CPU interfacing	2				
Practical evaluation of the pipelined CPU on the FPGA board	2				
Final Tests and Evaluation	2				
Bibliography					
Online bibliography					
M. Negru, F. Oniga, S. Nedevschi, Laboratory guide <u>http://users.utcluj.ro/~negrum</u>					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Computer Architecture is one of the fundamental subjects of the Computer Science and Information Technology field. It combines fundamental and practical aspects used for digital circuits design and implementation. The content of this subject is harmonized with the specific curricula of other national and international universities, and is evaluated by the Romanian government agencies (CNEAA and ARACIS). The practical aspects involve getting familiar with and using development products and tools provided by companies from Romania, Europe, and USA (ex. Xilinx, Digilent).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Testing the theoretical knowledge, the ability of problem solving, presence and activity	Written exam	50%		
Laboratory	Practical ability to solve and implement specific problems related to processor design, presence and activity	Lab exam, periodical assessment of results	50%		
Project					
Minimum standard of performance:					
Knowing the funda	amental theory of the subject, the ability to de	sign and implement a processor wit	h a reduced set of		
instructions.					
Grade calculus: 50% lab + 50% final exam					
Conditions for participating in the final exam: Lab ≥ 5					
Conditions for promotion: Final exam ≥ 5					

Date of filling in:	Titulari Course	Titlu Prenume NUME Conf.dr.ing. Mihai Negru	Semnătura
	Applications	Conf.dr.ing. Florin Oniga	
		Conf.dr.ing. Mihai Negru	

Date of approval in the department

Head of department Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council

Dean Prof.dr.ing. Liviu Miclea