SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	20.

2. Data about the subject

2.1 Subject name	2.1 Subject name			Special Mathematics in Engineering		
2.2 Course responsible/le	cturer	1	Prof.d	Prof.dr. Ioan Rasa <u>Ioan.Rasa@math.utcluj.ro</u>		
2.3 Teachers in charge of seminars/ laboratory/ project		ars/		Assoc.prof.dr. Daniela Inoan - <u>Daniela.Inoan@math.utcluj.ro</u> Assist.prof.dr. Diana Otrocol – <u>diana.otrocol@math.utcluj.ro</u>		
2.4 Year of study	П	2.5 Sem	ester	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		Е
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară		domeniu, DS – de specialitate, DC – complementară	DF			
2.7 Subject category DI – Impusă, D		Op – opț	ional	ă, DFac – facultativă	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	2	Laboratory	Project	
3.2 Number of hours per	56	of which:	Course	28	Cominara	20	Laboratory	Drainet	
semester	50	or which:	Course	28	Seminars	28	Laboratory	Project	
3.3 Individual study:									
(a) Manual, lecture material and notes, bibliography					20				
(b) Supplementary study in the library, online and in the field						20			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						26			
(d) Tutoring									
(e) Exams and tests						3			
(f) Other activities:									
		10 01 \ 0						-	

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	69		
3.5 Total hours per semester (3.2+3.4)			
3.6 Number of credit points	5		

4. Pre-requisites (where appropriate)

4.1 Curriculum	Elementary knowledge of complex numbers. Elements of calculus
4.2 Competence	Competences in using complex numbers (in algebraic and trigonometric form).
	Ability to calculate derivatives and real integrals.

5. Requirements (where appropriate)

5.1. For the course	Blackboard, videoprojector
5.2. For the applications	Blackboard, videoprojector

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science
	concepts
	C1.1 - Recognizing and describing specific concepts to calculability, complexity, programming paradigms and modeling of computing and communication
	systems
	C1.2 - Using specific theories and tools (algorithms, schemes, models,
	protocols, etc.) for explaining the structure and the functioning of hardware,

	software and communication systems C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	A presentation of the concepts, notions, methods and fundamental techniques used in complex functions theory and integral transforms theory.
7.2 Specific objectives	Use of the complex functions theory and integral transforms theory for solving problems in engineering.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Complex numbers. Operations, topology in C.	2		
Continuity. Monogenic functions. The Cauchy-Riemann conditions. Holomorphic functions.	2		
The complex integral. Definition. Cauchy's integral theorem. Cauchy's integral formula.	2		
Taylor and Laurent series. Singular points, classification.	2	Explanation	
Residues. The Residue Theorem.	2] '	
Applications of the Residue Theorem.	2	Demonstration	
Real integrals calculated with complex methods.	2		
The Fourier transform. Definition, properties.	2	Collaboration	
Applications of the Fourier transform.	2		
The Laplace transform. Definition and properties.	2	Interactive activities	
The inverse Laplace transform.	2		
Applications of the Laplace transform.	2		
The z transform. Applications.	2		
Difference equations. The z transform applied to solving difference equations.	2		

Bibliography

- 1. A.I. Mitrea, Analiza matematica in complex (curs+culegere de probleme), Ed. Mediamira, Cluj-Napoca, 2005.
- 2. A.I. Mitrea, Transformari integrale si discrete (curs + culegere de probleme) Ed. Mediamira, Cluj-Napoca, 2004.
- 3. M.L. Krasnov, A.I. Kiselev, G.I. Makarenko, Functions of a Complex Variable, Operational Calculus and Stability Theory, Mir Publishers, Moscow, 1984.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Operations in C. Geometric interpretations.	2		
The Cauchy-Riemann conditions. Holomorphic functions.	2		
Elementary functions, equations in the complex domain.	2		
The complex integral.	2		
Series of functions.	2	Explanation	
Residues. The Residue Theorem.	2	D	
Computing real integrals by using the Residue Theorem.	2	Demonstration	
The Fourier transform.	2	Collaboration	
Properties and apploications of the Fourier transform	2	Collaboration	
The Laplace transform.	2	Interactive activities	
The inverse Laplace transform.	2	interactive activities	
Applications of the Laplace transform.	2		
The z transform.	2		
Difference equations solved with the z transform.	2		

Bibliography

1. A.I. Mitrea, Analiza matematica in complex (curs+culegere de probleme), Ed. Mediamira, Cluj-Napoca, 2005.

- 2. A.I. Mitrea, Transformari integrale si discrete (curs + culegere de probleme) Ed. Mediamira, Cluj-Napoca, 2004.
- 3. M.L. Krasnov, A.I. Kiselev, G.I. Makarenko, Functions of a Complex Variable, Operational Calculus and Stability Theory, Mir Publishers, Moscow, 1984.

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade			
Course	Abilities of understanding and using creatively the concepts and proofs	Written examination onsite / Online (Microsoft Teams)	30%			
Seminar	Abilities of solving problems and applying algorithms	Written examination onsite / Online (Microsoft Teams)	70%			
Laboratory						
Project						
Minimum standar	Minimum standard of performance:					

Ability to present coherently a theoretical subject and to solve problems with practical content.

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof. dr. Ioan Raşa	
	Applications		
		Assoc.prof.dr. Daniela Inoan	
		Assist.prof.dr. Diana Otrocol	

Date of approval in the department	Head of department Prof.dr.ing. Rodica Potolea	
Date of approval in the Faculty Council	Dean Prof.dr.ing. Liviu Miclea	