Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	104.00

2. Data about the subject

2.1 Subject name			Basics of Quantum Information			
2.2 Course responsible/lec	turer		CS1 Dr. Liviu Zarbo – liviu.zarbo@itim-cj.ro			
2.3 Teachers in charge of a	pplica	ations	CS Levente Mathe – levente.mathe@itim-cj.ro AC Larisa Pioras-Timbolmas – larisa.timbolmas@itim-cj.ro			
2.4 Year of study	2	2 2.5 Semester 1 2.6 Assessment (E/C/V)			2.6 Assessment (E/C/V)	E
DF - fundamenta			tal, DD -	al, DD – in the field, DS – specialty, DC – complementary		
2.7 Type of subject	DI – c	DI – compulsory, DO – elective, Dfac – optional				

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminar		Laboratory	1	Project	
3.2 Number of hours per semester	42	of which:	course	28	Seminar		Laboratory	14	Project	
3.3 Individual study										
(a) Manual, lecture material and notes, bibliography									10	
(b) Supplementary study in the library, online and in the field								10		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10			
(d) Tutoring								0		
(e) Exams and tests								3		
(f) Other activities:						0				
3.4 Total hours of individual study (sum o	f (3.3(a)3	3.3(f)))		33					
3.5 Total hours per semester (3.2+3	3.4)				75					
3.6 Number of credit points					3					

4. Pre-requisites (where appropriate)

4.1 Curriculum	Linear Algebra
	Mathematical Analysis
	Physics
	Programming
4.2 Competence	

5. Requirements (where appropriate)

5.1. For the course	
5.2. For the applications	

6. Specific competences

6.1 Professional competences	Basic high-school level or first year undergraduate physics: mechanics,
	electricity and magnetism, optics
	Basic knowledge of linear algebra and calculus, first year undergraduate
	student level
	Basic programming knowledge, first year undergraduate student level
6.2 Cross competences	

7. Course objectives

7.1 General objective	Developing general knowledge relevant to applications in the field of quantum computation and quantum communications
7.2 Specific objectives	 Assimilating the basics of quantum computation: qubits, quantum gates, quantum circuits, quantum algorithms Developing the basic skills for developing quantum algorithms Understanding the basics of

8. Contents

8.1 Curs	Nr.ore	Teaching methods	Notes
1. Introductory notions.			
 From classical to quantum computing 			
 The dual behavior of the quantum objects 	2		
Tunneling			
Double slit experiment			
2. Quantum states			
Notations			
Probabilities			
 Matrix and vector representation of guantum states 	2		
• Qubits			
Pure states and mixed states			
3. Observables and guantum measurement 1			
Observables and operators			
• The Heisenberg principle	2		
Projective measurements			
The Stern-Gerlach experiment			
4. Observables and guantum measurement 2			
Quantum state vectors.			
• Observables and operators, the density matrix.	_		
 Probabilities and expectation values. 	2		
Partial measurements			
		Blackboard, video-	
5. Qubits		lectures, discussions	
 The two-level system and real life examples 		of examples, problem	
Quantum gates	2	solving	
 Superpositions and entanglement of gubits 			
• The Bloch sphere.			
6. Qubit control			
Larmor precession.			
Rabi oscillations	2		
 Functioning of quantum gates. 			
7. Quantum measurement and applications 1.			
The no-cloning theorem			
Quantum teleportation	2		
Quantum sensing			
Quantum tomography			
8. Quantum measurement and applications 2.			
Quantum random number generation	2		
Quantum communication protocols (BB84).			
9. Quantum Communication			
Quantum cryptography notions	2		
Quantum communication networks.	_		
10. Quantum computation and simulations			
 digital and analog quantum computers. 	2		
 Quantum simulations – concepts/applications. 			

11. Quantum circuits and algorithms		
The Uranium platform	2	
 Using online quantum computing resources (e.g. IBMQ) 		
12. Quantum algorithms 1.		
Deutsch-Josza algorithm.	2	
Grover algorithm		
13. Quantum algorithms 2.		
Quantum Fourier transform	2	
 RSA and Shor's algorithm 		
14. Physical platforms for quantum computing		
Superconducting qubits		
Cold atoms	2	
• Ion traps		

Bibliography

1. Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).

2. Ioan Burda, Introduction to Quantum Computation, Universal Publishers (2005).

3. David McIntyre, Quantum Mechanics: A Paradigms Approach, Pearson Addison-Wesley (2012).

4. Cohen-Tannoudji, Quantum Mechanics, Wiley-VCH; 2nd edition (2019).

8.2 Aplications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
1. Visualising qubit operations: Bloch sphere, single qubit gates, destructive and constructive interference (Quantum Odyssey)	2		
 Quantum circuits in Q. Odyssey: vectors, eigenvalues, basis change 	2		
3. Generating entanglement in quantum circuits (quantum gates: CNOT, SWAP, Toffoli). Visualisation in Q. Odyssey, circuits on the Uranium platform.	2	Quantum Software lab, using tools such	
4. Time evolution of qubits and their observables: visualization in Python	2	Quantum Oddyssey,	
Uranium platform: multiqubit quantum circuits and quantum measurements; Deutsch algorithm	2	Google Colab.	
6. Quantum oracles, Grover's algorithm (Uranium, Q. Odyssey)	2		
7. The Quantum Fourier Transform	2		
Dibliggenerative			

Bibliography

1. Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).

- 2. Ioan Burda, Introduction to Quantum Computation, Universal Publishers (2005).
- 3. David McIntyre, Quantum Mechanics: A Paradigms Approach, Pearson Addison-Wesley (2012).
- 4. Cohen-Tannoudji, Quantum Mechanics, Wiley-VCH; 2nd edition (2019).

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Solving 2 problems + 1 theory set of questions	Written exam	60%
Seminar			
Laboratory		Periodic lab quizzes	40%
Project			
Minimum standar	d of performance:		

Date of filling in:		Title Firstname NAME	Signature
	Course	Dr. Liviu Zarbo	
	Aplications	Levente Mathe	
		Larisa Pioras-Timbolmas	

Date of approval in the department

Head of Departament Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council

Dean Prof.dr.ing. Liviu Cristian MICLEA