Syllabus

1. Data about the program of study

· · · · · ·	
1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	56.20

2. Data about the subject

2.1 Subject name		Build	ling .	ing Automation				
2.2 Course responsible/lec	turer		Lecturer Dr. Eng. Ioan Valentin Sita – Valentin.Sita@aut.utcluj.ro					
2.3 Teachers in charge of a	applic	ations	Lecturer Dr. Eng. Ioan Valentin Sita – <u>Valentin.Sita@aut.utcluj.ro</u>					
2.4 Year of study	4	2.5 Semest	ter 2 2.6 Assessment (E/C/V)		С			
DF – fundamen		fundamental	tal, DD – in the field, DS – specialty, DC – complementary					
2.7 Type of subject	DI – d	DI – compulsory, DO – elective, Dfac – optional				DO		

3. Estimated total time

3.1 Number of hours per week	3	din care:	Curs	2	Seminar	0	Laborator	0	Proiect	1
3.2 Number of hours per semester	42	din care:	Curs	28	Seminar	0	Laborator	0	Proiect	14
3.3 Individual study										
(a) Manual, lecture material	and no	otes, biblio	graphy							28
(b) Supplementary study in t	he libr	ary, online	e and in t	he fie	ld					14
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						36				
(d) Tutoring							2			
(e) Exams and tests							3			
(f) Other activities:						0				
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 83										
3.5 Total hours per semester (3.2+3.4) 125										
3.6 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Control Engineering, Systems Theory, Process Modeling
4.2 Competence	Solve common problems in systems engineering by identifying the techniques, principles, and applying appropriate methods of mathematics with emphasis on numerical calculation methods.

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications/project	Mandatory attendance

6. Specific competences

6.1 Professional competences	Using mathematics fundamentals, methods of modeling, simulation, identification and analysis processes, computer aided design techniques.
6.2 Cross competences	N/A

7. Course objectives

7.1 General objective	Acquiring knowledge in design, programming and use in practical applications of automation systems for buildings.
7.2 Specific objectives	 Modelling systems for building automation. Structures and algorithms for automatic control systems for building automation.

- Designing, implementing and building automation systems programming.
- Applications in research, domestic and industrial field.

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes		
Introduction to building automation	2				
Monitoring and control systems for buildings	2				
The lighting system	2				
The heating/cooling, ventilation and air conditioning	2		In case of		
Security and Safety Systems	2	Teaching using	force		
Communication Technologies used in building automation	2	laptop and	majeure		
Dependencies systems	2	projector,	event, the		
Systems Integration	2	interactive course,	bo hold		
Standards used in implementing installations	2	debate / or online	online on		
Design systems for monitoring and control	2	on Teams platform	the Teams		
The implementation of systems for monitoring and control	2		platform		
Internet technologies and their use in building automation	2		p		
Building automation - city level	2]			
Applications - presentation of case studies	2				

Bibliography

[1] M. Ilina, "Manualul de instalații, Instalații de încălzire," Editura ARTECNO, ed., 2010

[2] S. Wang, Intelligent Buildings and Building Automation, New York: Taylor & Francis, 2009.

[3] H. Merz, T. Hansemann, and C. Hübner, Building Automation: Communication Systems with

EIB KNX, LON und BACnet: Springer, 2009.

[4] J. M. Sinopoli, Smart buildings systems for architects, owners and builders: Butterworth-Heinemann, 2009.
[5] P. K. Soori, and M. Vishwas, "Lighting Control Strategy for Energy Efficient Office Lighting System Design," Energy and Buildings, 2013.

[6] L. Wang, S. Greenberg, J. Fiegel et al., "Monitoring-based HVAC commissioning of an existing office building for energy efficiency," Applied Energy, 2012.

[7] F. Oldewurtel, D. Sturzenegger, and M. Morari, "Importance of occupancy information for building climate control," Applied Energy, 2012.

[8] G. Duță, "Manualul de instalații, Instalații de ventilație," Editura ARTECNO, ed., 2010.

[9] F. Domnița, T. Popovici, and A. Hoțupan, Instalații de ventilare și condiționare, Cluj-Napoca: Editura U.T.PRESS, 2010.

[10] D. Enache, Climatizarea clădirilor multizonale, București: Editura Conspress, 2008.

[11] H. Kruegle, CCTV Surveillance: Video practices and technology: Butterworth-Heinemann, 2011. [12] F. Nilsson, Intelligent network video: Understanding modern video surveillance systems: CRC Press, 2009.

[13] O. Javed, and M. Shah, Automated multi-camera surveillance: algorithms and practice: Springer, 2008.

[14] A. C. Caputo, Digital video surveillance and security: Butterworth-Heinemann, 2010.

[15] V. Damjanovski, CCTV, Second Edition: Networking and Digital Technology: Butterworth-Heinemann, 2005.

[16] G. Craighead, "Residential and Apartment Buildings, High-Rise Security and Fire Life Safety (Third Edition), Boston: Butterworth-Heinemann, 2009.

[17] R. P. Bennett, Fire Detection: Nova Science Pub Inc, 2011.

[18] R. E. Solomon, Foreword to the Second Edition, High-Rise Security and Fire Life Safety, Boston: Butterworth-Heinemann, 2009.

[19] W. Lin, S. Verstockt, S. Van Hoecke et al., Hot topics in video fire surveillance: Intech., 2011.

[20] H. Kruegle, and F. Abram, "Chapter 24 - Video-Security Systems Integration," CCTV Surveillance (Second

Edition), H. Kruegle and F. Abram, eds., pp. 577-582, Burlington: Butterworth-Heinemann, 2006.

[21] J.-Y. Dufour, Intelligent Video Surveillance Systems: John Wiley & Sons, 2012.

[22] J. Sinopoli, "Chapter 6 - Access Control Systems," Smart Buildings Systems for Architects, Owners and Builders, J. Sinopoli, ed., pp. 69-82, Boston: Butterworth-Heinemann, 2010.

[23] T. Norman, Chapter 4, "Access Control Credentials and Credential Readers, Electronic Access Control, Boston: Butterworth-Heinemann, 2012.

[24] P. Weinzierl, "The body as password," Biometric Technology Today, vol. 2010, no. 6, pp. 6-8, 2010.

[25] T. Norman, Chapter 17, Access Control Panels and Networks, Electronic Access Control, Boston: Butterworth-Heinemann, Boston, 2012. [26] G. Ballou, Chapter 43, Intercoms, In: Glen M. Ballou, Editor(s), Handbook for Sound Engineers, Boston: Focal Press, 2008.

[27] S. P. P. Simonovic, Managing water resources: methods and tools for a systems approach: Routledge, 2012. [28] C. T. Cheung, K. W. Mui, and L. T. Wong, "Energy efficiency of elevated water supply tanks for high-rise

buildings, Applied Energy, 2012.						
8.2 Aplications (seminar/laboratory/project)	No.hours	Teaching methods	Notes			
Introduction to building automation	1					
Monitoring and control systems for buildings	1					
The lighting system	1					
The heating/cooling, ventilation and air conditioning	1		In case of			
Security and Safety Systems	1	Presentation of	force			
Communication Technologies used in building automation	1	examples,	majeure			
Dependencies systems	1	demonstrations,	event, the			
Systems Integration	1	andications, practical	applications will be hold			
Standards used in implementing installations	1	online on Teams	online on			
Design systems for monitoring and control	1	nlatform	the Teams			
The implementation of systems for monitoring and control	1	plation	platform			
Internet technologies and their use in building automation	1		processing			
Building automation - city level	1					
Projects presentation	1					

Bibliography

[1] M. Ilina, "Manualul de instalații, Instalații de încălzire," Editura ARTECNO, ed., 2010

[2] S. Wang, Intelligent Buildings and Building Automation, New York: Taylor & Francis, 2009.

[3] H. Merz, T. Hansemann, and C. Hübner, Building Automation: Communication Systems with

EIB KNX, LON und BACnet: Springer, 2009.

[4] J. M. Sinopoli, Smart buildings systems for architects, owners and builders: Butterworth-Heinemann, 2009.

[5] P. K. Soori, and M. Vishwas, "Lighting Control Strategy for Energy Efficient Office Lighting System Design," Energy and Buildings, 2013.

[6] L. Wang, S. Greenberg, J. Fiegel et al., "Monitoring-based HVAC commissioning of an existing office building for energy efficiency," Applied Energy, 2012.

[7] F. Oldewurtel, D. Sturzenegger, and M. Morari, "Importance of occupancy information for building climate control," Applied Energy, 2012.

[8] G. Duță, "Manualul de instalații, Instalații de ventilație," Editura ARTECNO, ed., 2010.

[9] F. Domnița, T. Popovici, and A. Hoțupan, Instalații de ventilare și condiționare, Cluj-Napoca: Editura U.T.PRESS, 2010.

[10] D. Enache, Climatizarea clădirilor multizonale, București: Editura Conspress, 2008.

[11] H. Kruegle, CCTV Surveillance: Video practices and technology: Butterworth-Heinemann, 2011. [12] F. Nilsson, Intelligent network video: Understanding modern video surveillance systems: CRC Press, 2009.

[13] O. Javed, and M. Shah, Automated multi-camera surveillance: algorithms and practice: Springer, 2008.

[14] A. C. Caputo, Digital video surveillance and security: Butterworth-Heinemann, 2010.

[15] V. Damjanovski, CCTV, Second Edition: Networking and Digital Technology: Butterworth-Heinemann, 2005.

[16] G. Craighead, "Residential and Apartment Buildings, High-Rise Security and Fire Life Safety (Third Edition), Boston: Butterworth-Heinemann, 2009.

[17] R. P. Bennett, Fire Detection: Nova Science Pub Inc, 2011.

[18] R. E. Solomon, Foreword to the Second Edition, High-Rise Security and Fire Life Safety, Boston: Butterworth-Heinemann, 2009.

[19] W. Lin, S. Verstockt, S. Van Hoecke et al., Hot topics in video fire surveillance: Intech., 2011.

[20] H. Kruegle, and F. Abram, "Chapter 24 - Video-Security Systems Integration," CCTV Surveillance (Second

Edition), H. Kruegle and F. Abram, eds., pp. 577-582, Burlington: Butterworth-Heinemann, 2006.

[21] J.-Y. Dufour, Intelligent Video Surveillance Systems: John Wiley & Sons, 2012.

[22] J. Sinopoli, "Chapter 6 - Access Control Systems," Smart Buildings Systems for Architects, Owners and Builders, J. Sinopoli, ed., pp. 69-82, Boston: Butterworth-Heinemann, 2010.

[23] T. Norman, Chapter 4, "Access Control Credentials and Credential Readers, Electronic Access Control, Boston: Butterworth-Heinemann, 2012.

[24] P. Weinzierl, "The body as password," Biometric Technology Today, vol. 2010, no. 6, pp. 6-8, 2010.

[25] T. Norman, Chapter 17, Access Control Panels and Networks, Electronic Access Control, Boston: Butterworth-Heinemann, Boston, 2012. [26] G. Ballou, Chapter 43, Intercoms, In: Glen M. Ballou, Editor(s), Handbook for Sound Engineers, Boston: Focal Press, 2008.

[27] S. P. P. Simonovic, Managing water resources: methods and tools for a systems approach: Routledge, 2012.[28] C. T. Cheung, K. W. Mui, and L. T. Wong, "Energy efficiency of elevated water supply tanks for high-rise buildings," Applied Energy, 2012.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The topics of the courses cover the requirements of employers in the field of ICT, especially those in the field of systems engineering. Some of the methods applied in the discipline can be used in other areas.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade			
Course	Assessment of knowledge through a test based on the knowledge gained following participation in the course	Written exam / online exam using Teams	70%			
Seminar	-	_	-			
Laboratory	-	-	30%			
Project	Project presentation	Practical presentation or online presentation using Teams	-			
Minimum standard of performance: Written exam rabk > 5 and practical presentation rank > 5						

Date of filling in:		Title Firstname NAME	Signature
	Course	Lecturer dr.ing. Ioan-Valentin Sita	
	Aplications	Lecturer dr.ing. Ioan-Valentin Sita	

Date of approval by the Department of Automation Council

Head of Departament Prof.dr.ing. Honoriu VĂLEAN

Date of approval by the Faculty of Automation and Computer Science Council

Dean Prof.dr.ing. Liviu Cristian MICLEA