Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	55.10

2. Data about the subject

2.1 Subject name		Optii	imization				
2.2 Course responsible/lect	turer		Prof.dr.ing. Zsofia Lendek, zsofia.lendek@aut.utcluj.ro				
2.3 Teachers in charge of a	Teachers in charge of applications Prof.dr.ing. Zsofia Lendek, <u>zsofia.lendek@aut.utcluj.ro</u>						
2.4 Year of study	4 2.5 Semeste			2	2.6 Assessment (E/C/V)	E	
2.7 Turne of subject	DID – in the field					DD	
2.7 Type of subject	DOP – elective					DO	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	0	Laboratory	2	Project	0
3.2 Number of hours per semester	56	of which:	course	28	Seminar	0	Laboratory	28	Project	0
3.3 Individual study										
(a) Manual, lecture material and notes, bibliography								20		
(b) Supplementary study in t	he libr	ary, online	e and in t	he fie	ld					10
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							33			
(d) Tutoring								3		
(e) Exams and tests								3		
(f) Other activities:							0			
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2+3.4) 125										
3.6 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Numerical calculus, analysis, linear algebra, differential equations, Matlab
4.2 Competence	Numerical calculus, analysis, linear algebra, differential equations, Matlab

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Presence and successfully completing the lab/project applications are
	compulsory

6. Specific competences

6.1 Professional competences	
	C1 Using knowledge of mathematics, physics, mechanical engineering, chemistry, electrical and electronic engineering in systems engineering
	C3
	Using basics of control engineering, methods of modeling, simulation, identification and analysis of processes, computer assisted design
	techniques.
6.2 Cross competences	

7. Course objectives

7.1 General objective	Mathematical formulation of an optimization problem			
	Optimization methods			
	Global optimization			
7.2 Specific objectives	 Solving single variable optimization problems Implementing optimization methods Solving multivariable optimization problems Applying optimization methods Using genetic algorithms for particular applications 			

8. Contents 8.1 Lecture **Teaching methods** No.hours Notes Introduction. Stating an optimization problem. 2 Unconstrained optimization. Sufficient conditions. Constrained 2 optimization. Optimization of single variable functions. 2 Newton and gradient methods. 2 Conjugate gradient and quasi-Newton methods. 2 Exposition Possibly Algorithms for minimization without derivatives. 2 Questions online on Linear programming. Formulation. 2 **Discussions with** Teams The simplex method. 2 students platform Proofs Quadratic programming. 2 2 Active set methods. Genetic algorithms for numerical optimization 2 Genetic algorithms for numerical optimization 2 Applications. 2 Applications. 2 Bibliography 1. Optimal, predictive, and adaptive control, Edoardo Mosca, Englewood Cliffs, New Jersey 2. Modern control design : with MATLAB and SIMULINK, Ashish Tewari 3. Tehnici de optimizare, vol. 2, T. Colosi, P.Bikfalvi, D.Isoc 4. Optimal control with engineering applications, Geering, H 5. Optimization, P. Raica 8.2 Aplications (seminar/laboratory/project) No.hours **Teaching methods** Notes Numerical methods in optimization. 2 Unconstrained optimization. Applications 2 Optimization of single variable functions. 2 Optimization of single variable functions. 2 Attendance Newton and gradient methods. Applications. 2 mandatory. 2 Newton and gradient methods. Applications. Matlab will Nelder-Mead and Rosenbrock methods. Applications. 2 Tutorials and be used. Nelder-Mead and Rosenbrock methods. Applications. 2 application Possibly online on Simplex method. Applications. 2 Teams Simplex method. Applications. 2 platform Active set method. Applications. 2 Active set method. Applications. 2 Genetic algorithms. Applications. 2 Genetic algorithms. Applications. 2

Bibliography

1. Optimal, predictive, and adaptive control, Edoardo Mosca, Englewood Cliffs, New Jersey

2. Modern control design : with MATLAB and SIMULINK, Ashish Tewari

3. Tehnici de optimizare, vol. 2, T. Colosi, P.Bikfalvi, D.Isoc

4. Optimal control with engineering applications, Geering, H

5. Optimization, P. Raica

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The methods taught at this course represent the basis in optimization. Thus, the students will be capable to formulate mathematically an optimization problem, to analyze the problem, determine the methods that can be used to solve it and interpret the results. By doing the project, the students will be familiarized with the latest results in this domain and have the possibility to do research.

The knowledge acquired can be applied both in the academic community (research in optimization and optimal control) and in industry (optimal control, optimal design, improving/optimization of industrial processes)

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Level of understanding of the material	Exam	0.4
Seminar			
Laboratory	Implementation, analysis, report, discussion	Partial exam	0.6
Project			
Minimum standar All lab exercises co	d of performance: ompleted + final grade >5		

Date of filling in:	te of filling in: Title Firstname NAME			Signature
	Course	Prof.dr.ing. Zsofia Lendek		
	Applications	Prof.dr.ing. Zsofia Lendek		
Date of approval by the Department Board			Head of Departament . Prof.dr.ing. Honoriu VĂ	 LEAN
Date of approval by the Faculty Council			Dean Prof.dr.ing. Liviu Cristia	n MICLEA