Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Subject code	54.20

2. Data about the subject

2.1 Subject name		Comp	Computer Integrated Manufacturing				
2.2 Course responsible/lec	Course responsible/lecturer Sl.dr.ing. Sorin HERLE, sorin.herle@aut.utcluj.ro						
2.3 Teachers in charge of a	eachers in charge of applications Sl.dr.ing. Sorin HERLE, sorin.herle@aut.utcluj.ro						
2.4 Year of study	4	2.5 Semest	5 Semester 2 2.6 Assessment (E/C/V)		2.6 Assessment (E/C/V)	Е	
2.7 Type of cubic et	DF – fundamental, DD – in the field, DS – specialty, DC – complementary			DS			
2.7 Type of subject DI – compulsory, DO – elective, Dfac – optional			DO				

3. Estimated total time

=										
3.1 Number of hours per week	5	of which:	Course	2	Seminar	0	Laboratory	3	Project	0
3.2 Number of hours per semester	70	of which:	course	28	Seminar	0	Laboratory	42	Project	0
3.3 Individual study										
(a) Manual, lecture material	and no	tes, biblio	graphy							14
(b) Supplementary study in the library, online and in the field							10			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							14			
(d) Tutoring							14			
(e) Exams and tests							3			
(f) Other activities:							0			
3.4 Total hours of individual study (sum o	f (3 3(a) 3	2 (f)))		55					

3.5 Total hours per semester (3.2+3.4)	125	
3.5 Total hours per semester (3.2+3.4) 3.6 Number of credit points		

4. Pre-requisites (where appropriate)

	pp. op. a.c./
4.1 Curriculum	Robot control systems,
	Electric and electronic control equipment,
	Hydro-pneumatic control equipment
4.2 Competence	Robots programming, PLCs programming

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	The laboratory activities are mandatory

6. Specific competences

6.1 Professional competences	C3 Using automation fundamentals, methods of modeling, simulation, identification and analysis processes, computer-aided design techniques. C5 Application development and implementation of algorithms and automated management structures, using the principles of project management, programming environments and technologies based on microcontrollers, DSPs, programmable logic controllers, embedded systems.
6.2 Cross competences	N/A

7. Course objectives

7.1 General objective	Develop skills in integrated manufacturing systems control
7.2 Specific objectives	Assimilation of theoretical knowledge specific to the integrated manufacturing
	systems.
	Develop skills for implementing programs to monitor and control the
	equipment of an integrated manufacturing system.

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
Introduction in Manufacturing	2		
Manufacturing Systems	2		
Manufacturing Operations	2		
Material handling systems	2		
Automatic data capture	2		
Group technology	2	Presentation,	
Flexible manufacturing systems	2	discussion, video examples face to face or online on Teams	
Concurrent engineering and process planning	2		
Production planning systems	2	platform	
Production control systems	2	plationii	
Quality in manufacturing	2		
Sustainable manufacturing	2		
Revolution and evolution in manufacturing	2		
Production systems - recapitulative course	2		

Bibliography

1. Sorin HERLE, Computer integrated manufacturing - Lecture notes - 2022, (on-line:

http://rocon.utcluj.ro/sorin/CIMc.html);

- 2.Mikell P. Groover, Automation, Production Systems, and Computer Integrated Manufacturing (4th edition), Prentice Hall 2016;
- 3. James A. Rehg, Henry W. Kraebber, Computer-Integrated Manufacturing (3rd edition), Prentice Hall 2005;
- 4.U. Rembold, B.O. Nnaji, A. Storr, Computer Integrated Manufacturing and Engineering, Addison-Wesley 1993;
- 5.Masaaki Imai , Gemba Kaizen: A Commonsense Approach to a Continuous Improvement Strategy 2/E –, Hardcover:
- 448 pages, Publisher: McGraw-Hill Professional; 2 edition (May 23, 2012), ISBN-10: 9780071790352, ISBN-13: 978-0071790352;
- 6.F. Robert Jacobs, Manufacturing Planning and Control for Supply Chain Management, William Berry (Author), D. Clay Whybark (Author), Thomas Vollmann (Author), Hardcover: 576 pages, Publisher: McGraw-Hill Professional; 1 edition (March 29, 2011), Language: English, ISBN-10: 0071750312, ISBN-13: 978-0071750318;
- 7.Steven M. Bragg, Inventory Management, 246 pages, Publisher: Accounting Tools (October 4, 2013), Language: English, ISBN-10: 1938910192, ISBN-13: 978-1938910197;
- 8.Larry Webber, Michael Wallace, Quality Control for Dummies, 384 pages, Publisher: For Dummies; 1 edition (2007), Language: English, ISBN-10: 0470069090, ISBN-13: 978-0470069097.

8.2 Aplications** (seminar/laboratory/project)	No.hours	Teaching methods	Notes			
Modeling and simulation of a production line	3		Software:			
Planning processes and production	3		Logixpro, CX-			
Flexible manufacturing system. Development and operation	3		Programmer,			
Programming of a dosing system	3		RSLogixPro, ACL,			
The control of a mixing and thermal treatment plant	3	Tutorials and	LLWin, Excel,			
Control of a bottling line	3	applications face	Arena, Flexim,			
Performance analysis of a manufacturing system	3	to face or online	WinMan,			
Optimization of production processes	3	on Teams/Team	MelfaMasic II,			
User interfaces for production processes	3	Viewer	Equipment used:			
Programming of a transport and storage system	3		PLC Allen Bradley			
Programming the scora-er 14pro robot	3		SLC500,			
Programming the scorbot-er 4u robot for sorting operations	3		PLC Omron			
Programming a robotic handling system	3		CQM1, CPM2A,			

	3	PLC Siemens S3,
		Robot RTT
		Fischer technik,
Programming a robotic assembly station		Robot Intelitek
		Scorbot ER-Vplus,
		robot Mitsubishi
		RV II AJ

** Each student will choose 12 of the 16 proposed laboratories.

Bibliography

- 1. Sorin HERLE, Computer integrated manufacturing, UTPress, ISBN 978-606-737-222-9, 2017;
- 2. Sorin HERLE, Computer integrated manufacturing, 2022 (on-line: http://rocon.utcluj.ro/sorin/CIMI.html);

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Skills gained from participating in this discipline will be required engineers dealing with production planning and management, maintenance, manufacturing systems, quality control in production systems, manufacturing control systems, etc.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Questions and/or exercises	Written exam (theory and exercises) or tests at the end of each course. The average of the tests can, on request, replace the exam if a minimum of 70 points out of a maximum of 140 have been accumulated.	50%
Seminar			
Laboratory	Solving applications proposed every laboratory work.	Evaluation at the end of each laboratory according to the grading scale attached to each laboratory documentation and / or colloquium at the end of the semester.	50%
Project	-	-	-
Minimum standar	d of performance: $E \ge 5$, $L \ge 5$	•	

Date of filling in:		Title Firstname NAME	Signature
29.06.2022	Course	sl.dr.ing. Sorin HERLE	
	Aplications	sl.dr.ing. Sorin HERLE	

Date of approval by the Department Board	Head of Departament Prof.dr.ing. Honoriu VĂLEAN	
	-	
Date of approval by the Faculty Council	Dean	
	Prof.dr.ing. Liviu Cristian MICLEA	