Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Department	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Code of discipline	51.10

2. Data about the subject

2.1 Subject name		Micro			rosystems and Data Acquisition				
2.2 Course responsible/lecturer		Assoc. Prof. Eng. Rusu-Both Roxana, PhD – roxana.both@aut.utcluj.ro							
2.3 Teachers in charge o	f applic	ations	Eng. Toderean Bianca, PhD(c) - bianca.toderean@gmail.com						
2.4 Year of study	4	4 2.5 Semeste			2.6 Assessment (E/C/V)	E			
2.7 Turno of subject	DF –	fundamental,	ndamental, DID – in the field, DS – specialty, DC – complementary						
2.7 Type of subject DOB – compulsory			, DO	– elec	ctive, FAC – optional	DO			

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	0	Laboratory	2	Project	0
3.2 Number of hours per semester	56	of which:	course	28	Seminar	0	Laboratory	28	Project	0
3.3 Individual study										
(a) Manual, lecture material and notes, bibliography									14	
(b) Supplementary study in the library, online and in the field									12	
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								12		
(d) Tutoring									3	
(e) Exams and tests									3	
(f) Other activities:								0		
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 44										
3.5 Total hours per semester (3.2+3.4) 100										
3.6 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1 Curriculum	-
4.2 Competence	Analog and digital data acquisition system architectures, signal conditioning circuitry, signal generators, sensors and transducers, microcontrollers and industrial equipment programming

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Attendance is mandatory

6. Specific competences

6.1 Professional competences	C5 Application development and implementation of control structures and
	algorithms, using project management principles, programming
	environments and microcontroller-based technologies, signal processors,
	programmable automation systems, embedded systems
	C5.1 Identification of the concepts and methods for project management
	and of specific languages for application development (sequential,
	concurrent, real-time, non-real-time, distributed, embedded, non-
	embedded, mobile, on-line, etc.).
	C5.4 Assessment of the implementation of automation and IT applications
	using automatic control structures, algorithms, programming

	environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems, etc.
6.2 Cross competences	-

7. Course objectives

7.1 General objective	Understand the concept of virtual instrumentation, of analog and digital data acquisition systems
7.2 Specific objectives	 Knowledge of LabVIEW[™] specific programming techniques, Implementing programs using graphical programming, Accomplishment of analog and digital signal acquisition, Implementing control structures using LabVIEW[™], with industrial equipment or instruments.

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
Introduction to the LabVIEW [™] Environment	2		
Data Acquisition. USB6009 User Guide And Specifications	2		
Implementing a program in LabVIEW [™] (Virtual Instruments - VIs)	2		
Data Types: Vectors, Clusters, etc. Troubleshooting and Debugging VIs	2		
Developing Modular Applications. Storing Measurement Data in Files	2		
Communicating Between Multiple Loops running in parallel on a computing system	2		
Programming techniques introduction for myRIO embedded system. Short presentation of the real-time system and programming using LabVIEW [™] FPGA	2	Projector presentations, or Microsoft Teams	-
Industrial Instrument Control from LabVIEW [™]	2	platform	
Controlling the User Interface	2	discussions	
Improving an Existing VI	2		
Wireless Sensor Network. Statechart. MathScript. Industrial applications of the technologies presented.	2		
Programming ARM microcontrollers from LabVIEW [™] . Control and simulation. Simulink Interface	2		
Process Identification. Programming of Android Mobile Devices. Programming of Industrial Touch Panels	2		
Programming Arduino Devices from LabVIEW [™] . Hardware-in-the- Loop Simulation. New Technologies "Vector Signal Transceiver"	2		

Bibliography

1. Robert H. Bishop, National National Instruments, "LabVIEW 2009 Student Edition", Prentice Hall, 2009, Bibl. UTC-N 536.027.

2. John Essick, "Hands-On Introduction to LabVIEW for Scientists and Engineers", Oxford University Press, 2008, Bibl. UTC-N 536.028.

3. Peter A. Blume, "The LabVIEW Style Book", Prentice Hall, 2007, Bibl. UTC-N 541.283.

4. Ronald Larsen, "LabVIEW for Engineers", Prentice Hall, 2010, Bibl. UTC-N 541.295.

5. Stephen Philip Tubbs, "LabVIEW for Electrical Engineers and Technologists", Stephen Philip Tubbs, 2011, Bibl. UTC-N 535.886.

6. National Instruments, "LabVIEW Core 1 Course Manual", Course Software Version 2010, August 2010 Edition, Part Number 325290B-01, digital format.

7. National Instruments, "LabVIEW Core 2 Course Manual", Course Software Version 2010, August 2010 Edition, Part Number 325292B-01, digital format.

8.2 Applications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
LabVIEW [™] Introduction. Express VIs using and USB-6009 Data	4	Practical activities	
Acquisition System with Sensors Extensions	4	on the equipment,	
Data Acquisition and Processing in LabVIEW [™] . NI DAQmx Drivers	4	or simulation, the	-
for USB-6009 DAQ	4	development of	

SubVIs Implementation. Signal Generators Implemented with LabVIEW [™] . Storing Measurement Data. Serial Data Transmission	4	software applications,
Identified a Process and Design a Control System in LabVIEW [™]	4	supplementary
myRIO Programming with LabVIEW [™] Real Time, simple applications for sensor and actuators	4	explanations using presentations
myRIO complex application with LabVIEW [™] Real Time and FPGA	4	related to
Practical exam	4	applications, or Microsoft Teams platform discussions

Bibliography

- 1. Silviu Folea, "Microsystems and Data Acquisition. Applications", Cluj-Napoca, 2019, digital format.
- 2. Silviu Folea (Editor), "Practical Applications and Solutions using LabVIEW[™] Software", InTech, Croatia, 2011, online: <u>http://www.intechopen.com/books/practical-applications-and-solutions-using-labview-software</u>.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The topics presented at this course are specialized ones; they are included in other universities' curricula. The LabVIEW[™] graphical programming environment is used in industrial testing, measurement and control applications.

10. Evaluation

knowledge	Written exam and oral	E 00/
	evaluation using Microsoft Teams platform	50%
	-	-
practical skills	Evaluation of the laboratory reports and Practical exam and oral evaluation using Microsoft Teams platform	50%
	-	-
	practical skills	- practical skills Evaluation of the laboratory reports and Practical exam and oral evaluation using Microsoft Teams platform -

Date of filling in: 01.07.2022		Title Firstname NAME	Signature
	Course	Assoc. Prof. Eng. Roxana RUSU-BOTH, PhD	
	Applications	Eng. Bianca TODEREAN, PhD(c)	

Date of approval by the Automation Department Board

Head of Automation Department Prof. Eng. Honoriu VĂLEAN, PhD

__.__.2022

Date of approval by the Faculty of Automation and Computer Science

Dean Prof. Eng. Liviu MICLEA, PhD

__.__.2022