Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	47.00

2. Data about the subject

2.1 Subject name		Robo	bot Control systems					
2.2 Course responsible/lecturer ŞL. dr. Ing Anastasios NATSAKIS – tassos.natsakis@aut.utcluj.ro								
2.3 Teachers in charge of	2.3 Teachers in charge of applications							
2.4 Year of study	4	2.5 Semester 1 2.6 Assessment (E/C/V)				E		
DF – fundamental,			, DD	– in t	he field, DS – specialty, DC – complementary	DD		
2.7 Type of subject DI – compulsory, D		- 00	electi	ive, Dfac – optional	DI			

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminar	0	Laboratory	2	Project	1
3.2 Number of hours per semester	130	of which:	Course	28	Seminar	0	Laboratory	28	Project	14
3.3 Individual study										
(a) Manual, lecture material and notes, bibliography								28		
(b) Supplementary study in the library, online and in the field									14	
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays									14	
(d) Tutoring									2	
(e) Exams and tests									2	
(f) Other activities:								0		
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 60										
3.5 Total hours per semester (3.2+3.4) 130										
3.6 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Systems Theory, Process modeling, Linear Algebra and Analytical Geometry,
	Python programming
4.2 Competence	Solve problems in the field of systems engineering by identifying proper
	methods and techniques applying mathematics and numerical calculus

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Presence is mandatory

6. Specific competences

6.1 Professional competences	C3 Operating with fundamentals of control engineering, process modelling, simulation, identification and analysis methods, and computer aided design.
6.2 Cross competences	

7. Course objectives

7.1 General objective	Acquire knowledge in design, programming and operating industrial robots.
7.2 Specific objectives	Industrial robots modelling, Robot control algorithms, Robot programming,

8.1 Lecture	No. hours	Teaching methods	Notes	
Homogeneous transformations	2			
Forward kinematics	2			
Denavit-Hartenberg convention	2			
Jacobian matrix	2			
Inverse kinematics	2			
Trajectories	2	Presentation,		
Dynamic modeling	6	Examples, Practical		
Control strategies	2	applications		
Mobile robots	2			
Drones	2	-		
Underwater robots	2			
Applications	2			
Bibliography				
1. Philip J.Mc.Kerrow – Introduction to Robotics – Addison-Weslw	y Publ.Co.,19	95.		
2. John J.Craig – Introduction to Robotics (Mechanics and Control)	– CRC Press	2005.		
3. Lazea Gh., E. Lupu, P. Dobra- Sisteme de conducere a robotilor si		egrata. Ed.Mediamira,	1998.	
Mark W. Spong - Robot modeling and control – John Willey & S				
Shuai Li - Kinematic Control of Redundant Robot Arms Using Ne		s, 2019.	•	
8.2 Applications (laboratory)	No. hours	Teaching methods	Notes	
Homogeneous transformations	2	_		
Forward kinematics	2	_		
Denavit-Hartenberg convention	2			
Jacobian matrix	2			
Inverse kinematics	2	Practical		
Trajectories	2	applications,		
Dynamic modeling	6	numerical methods		
Individual joint control	2	numerical methods		
Computed torque control	2			
Drones modeling	2			
Underwater robots	2			
Applications	2			
Bibliography				
1. Philip J.Mc.Kerrow – Introduction to Robotics – Addison-Weslw	•			
John J.Craig – Introduction to Robotics (Mechanics and Control)				
3. Lazea Gh., E. Lupu, P. Dobra- Sisteme de conducere a robotilor si		egrata. Ed.Mediamira,	1998.	
4. Mark W. Spong - Robot modeling and control – John Willey & S	ons, 2004			
5. Peter Corke – Robotics toolbox for python			1	
8.3 Applications (project)	No. hours	Teaching methods	Notes	
Understanding ROS filesystem	2	4		
Creating basic applications	4	Practical		
Setting up a robotic platform	2	applications,		
Develop a robotic application	4	numerical methods		
Reporting	2]		

Industrial applications

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Demonstration of understanding of principles of robotic structures, modeling, control and applications	Written examination	60%
Laboratory	Ability to construct robotic simulations and design controller strategies	Computer examination	30%
Project	Ability to construct basic robotic simulations using ROS	Report	10%
	d of performance: e, laboratory, and project) ≥ 5		

Date of filling in:		Title First name NAME	Signature
27.06.2022	Course	ŞIL dr. Ing. Anastasios NATSAKIS	
	Applications		

Date of approval by the Department Board

Head of Departament Prof.dr.ing. Honoriu VĂLEAN

Date of approval by the Faculty Council

Dean Prof.dr.ing. Liviu Cristian MICLEA