Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	42

2. Data about the subject

2.1 Subject name		Hydr	ydro-Pneumatic Control Equipment			
2.2 Course responsible/lec	cturer	•	Assoc prof. dr. ing. Levente Tamas (Levente.Tamas@aut.utcluj.ro)			
2.3 Teachers in charge of a	.3 Teachers in charge of applications Assoc prof. dr. ing. Levente Tamas (Levente.Tamas@aut.utcluj.ro)					
2.4 Year of study	3	3 2.5 Semeste		2	2.6 Assessment (E/C/V)	Е
DF – fundamental,			l, DD – in the field, DS – specialty, DC – complementary			DS
2.7 Type of subject	DI – c	DI – compulsory, DO – elective, Dfac – optional				

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	0	Laboratory	2	Project	0
3.2 Number of hours per semester	75	of which:	course	28	Seminar	0	Laboratory	28	Project	0
3.3 Individual study										
(a) Manual, lecture material and notes, bibliography							9			
(b) Supplementary study in the library, online and in the field							1			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							2			
(d) Tutoring								0		
(e) Exams and tests								3		
(f) Other activities:								4		
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 19										
3.5 Total hours per semester (3.2+3.4) 75										
3.6 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Control engineering, system theory
4.2 Competence	Design and implementation of basic control loops including also electrical and
	telecommunication equipment
	English

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Attendance is compulsory. Reading and understanding of the lecture notes.

6. Specific competences

6.1 Professional competences	To have knowledge about the functional principles of the fluid equipment's.
	To have an in-depth knowledge about the analysis and synthesis of the
	control loops containing hydro-pneumatic equipment.
	To have understanding of the interfaces for these equipment.
	To choose the right equipment for a fluid control loop.
	To be able to design and build fluid control loops.
	To have knowledge about specific controllers, sensors, interfaces for hydro-
	pneumatic systems.

6.2 Cross competences	To have competences for making analysis/design of hydro-pneumatic
	systems
	To have the communication competences specific for engineers from the
	hydro-pneumatic domain
	To have the ability to adopt emerging technological parts specific from this
	domain.

7. Course objectives

7.1 General objective	Design, implementation, testing, usage, support for automation systems using fluid power.
7.2 Specific objectives	Earning knowledge about the design and functional principles of the hydro- pneumatic equipment. Synthesis of the control systems based on the hydro-pneumatic equipment.

8. Contents

Q 1 Losturo	Nahaura	Teaching mathada	Natas	
8.1 Lecture	No.nours	Teaching methods	Notes	
Introduction to the hydraulic-pneumatic systems	2			
(applications, examples, analogies)		4		
Theoretical aspects of the fluids	2			
Passive circuit elements	2	4		
Active circuit elements	2			
Applications to active-passive circuit elements	2		The	
Pneumatic actuators	2	Presentation using	presentations	
Pneumatic transducers	2	beamer/online	life examples	
Pneumatic cylinder control equipment	2	sharing possible	IIIe examples	
Discrete pneumatic circuits	2		as well as	
Pneumatic controllers	2		case studies.	
Hydraulic amplifiers	2			
Hydraulic motors	2			
Hydraulic logic elements	2			
Case study of a control loop	2			
Bibliography				
1. Gh.Lazea, R.Robotin, S.Herle, C.Marcu – Echipamente de autom	natizare pne	umatic si hidraulice UTF	ress 2006.	
2. A.Hanieh – Fluid Power Control : Hydraulics and Pneumatics- Ca	ambridge Pu	ublishing. 2012.		
3. James Daines - Fluid Power: Hydraulics and Pneumatics, Goodh	eart Willco	« Publ., 2009		
8.2 Applications (seminar/laboratory/project)	No.hours	Teaching methods	Notes	
Flow measurement with restrictor	4			
Pneumatic amplifiers.	4	Practical work	-	
Electro-pneumatic converter	4	including	Encouraging	
Pneumatic actuators and pressure transducers	4	computation and	2 students in	
Sorting application with pneumatic Fischer equipment	4	discussion/or online	a groun	
Control of a Festo pneumatic robot	4	variant on Teams	a group	
Simulation of hydraulic circuits in SymHydraulics 4				
Bibliography				

1. L. Tamas et. al.: Hydraulic and Pneumatic Control equipment's –laboratory book, UTPress, 2015 2. Laboratory notes

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Both the equipment and the course content are including parts which were consulted with companies from this field, including Emerson, Baumann Automation, Bosch and Siemens representatives from Cluj-Napoca, Romania.

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Theoretical concepts Analytic and synthetic work	Written exam/or online exam on Teams	8 from 10
Seminar	-		
Laboratory	Understanding the laboratory work as well as performing the hands on part	Laboratory colloquium / or online evaluation	2 from 10
Project	-		
Minimum standar	d of performance: 5 from 10		

Date of filling in: 01.07.2022		Title First name NAME	Signature
	Course	Assoc. prof dr. ing. Levente Tamas	
	Applications	Drd. Alexandru Pop	
		Drd. Benjamin Kelenyi	

Date of approval by the Department Board

Head of Departament Prof.dr.ing. Honoriu VĂLEAN

Date of approval by the Faculty Council

Dean Prof.dr.ing. Liviu Cristian MICLEA