Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Subject code	41.00

2. Data about the subject

2.1 Subject name		Elec	tric a	nd El	ectronic Control Equipment	
2.2 Course responsible/lec	burse responsible/lecturer SI. Dr. ing. Ruben Dan Crişan – ruben.crisan@aut.utcluj.ro					
			SI.c	lr.ing	. Ruben Dan Crișan – <u>ruben.crisan@aut.utcluj.ro</u>	
2.3 Teachers in charge of applications		As.drd.ing.Harja Gabriel - gabriel.harja@aut.utcluj.ro				
		Ing. Mihai Stanese - <u>stanesemihai@yahoo.com</u>				
			Ing	. Biar	nca Toderean - bianca.toderean@gmail.com	
2.4 Year of study	3	2.5 Seme	ster	2	2.6 Assessment (E/C/V)	E
	DF – f	DF – fundamental, DID – in the field, DS – specialty, DC – complementary			he field, DS – specialty, DC – complementary	DS
2.7 Type of subject	DI – c	I – compulsory, DO – elective, Dfac – optional		re, Dfac – optional	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	0	Laboratory	2	Project	0
3.2 Number of hours per semester	56	of which:	course	28	Seminar	0	Laboratory	28	Project	0
3.3 Individual study										
(a) Manual, lecture material	and no	tes, biblio	graphy							5
(b) Supplementary study in the library, online and in the field							3			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							5			
(d) Tutoring							3			
(e) Exams and tests						3				
(f) Other activities:						0				
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 19										
3.5 Total hours per semester (3.2+3	8.4)				75					
3.6 Number of credit points					3					

4. Pre-requisites (where appropriate)

4.1 Curriculum	System theory, Fundamentals of Electronic Circuits, Computer programming
4.2 Competence	Mathematics, basic electronics circuits, computer operating.

5. Requirements (where appropriate)

	1
5.1. For the course	The student needs to be present at 70% of the total number of lectures in order to have the right to take the exam.
5.2. For the applications	The student is allowed to participate to an application class only by presenting a report for the previous application.

6. Specific competences

6.1 Professional	• C4 – Design, implementation, testing, operation and maintenance of systems with
competences	generic and dedicated equipments, including computer networks for control
	engineering and applied informatics

	 C4.1 –Defining the requirements of applicable standards and of the methods of implementation, testing, operation and maintenance for the equipments used in the applications of automatic control and applied informatics based on on the operation and design principles.
	 C4.2 –Explaining and interpreting the methods of design, implementation, testing, operation and maintenance for the generic and spcific equipments used in the applications of automatic control and applied informatics
	 C4.3 - Solving practical problems of monitoring and automatic control and problems of applied informatics by using and adapting equipments (digital and analogue) and by using information technologies.
	 C4.4 - Evaluation through monitoring, diagnosis, analysis of experimental data, in accordance with specific standards of performance of the design, implementation, testing, validation, operation and maintenance of equipment and computer networks activities when used for automatic control and informatics applications
	• C4.5 - Development and implementation of technical projects for automatic systems and information systems, that include general purpose and dedicated equipments (digital and analogue), including computer networks.
6.2 Cross	
competences	

7. Course objectives

7.1 General objective	Knowledge of fundamental principles, the constructive-technological and conceptu issues underlying common automation equipment (transmitters, controlle indicators, recorders, Programmable Logic Controllers), assimilation of knowled concerning the possible use of such equipment to implement automatic control systems for industrial processes.			
7.2 Specific objectives	 Wiring and commissioning of common control systems equipment in typical industrial application. Wiring, commissioning and programming of programmable logic controllers (PLC). Designing and building automation equipment (transmitters, indicators, PID controllers) using microcontroller development systems. 			

8. Contents

8.1 . L	ecture (syllabus)	No.hours	Teaching methods	Notes
C1.	Introductive notions. Electromechanical relays, electronic relays.	2		
C2.	Time, magnetic and optic relays.	2		
C3.	Signal transmiters (temperature).	2		
C4.	Signal transmitters (ph, pressure, flow).	2		
C5.	Indicators, recorders, integrators.	2	1	
C6.	Automatic Controllers with PID structure: basics, analog controllers, digital controllers, control algorithms.	2	Slides presentation,	
C7.	Automatic Controllers with PID structure: values display, wiring, commissioning, auxiliary modules, auxiliary functions	2	demonstrations on	
C8.	Usual digital controllers: configuration	2	willeboard, discussions	
C9.	Digital systems in industrial process control, SCADA systems.	2	1	
C10.	Digital systems in industrial process control - Industrial communication	2		
C11.	Programmable logic controllers (PLC): generalities, hardware configuration	2		
C12.	Programmable logic controllers (PLC): the graphset concept,	2		

ladder diagrams				
C13. Programmable logic controllers (PLC): sequential process control applications.	2			
C14. Programmable logic controllers (PLC): continuous process control applications.	2			
Bibliography				
1. Fundamentals of PLC, sensors and communications, J. Stenerson, 20	04			
2. PID control, F. Haugen, Tapir Uttrykk, 2004.				
3. Engineering instrumentation and control, Haslam J. A., 1993				
4. Lessons In Industrial Instrumentation, Tony R. Kuphaldt,2009				
5. Basic Instrumentation Measuring Devices And Basic PID Control, CN	SC Technica	Il Training Group, 2003		
6. Nașcu, Ioana Nașcu, R. Crișan, S. Folea, Echipamente și sisteme de a	utomatizare	e, UTPRESS, 2015. ISBN 978-60	16-737-	
099-7.	No hours	To o obliger we obliged	Natas	
8.2. Applications	NO.NOURS	leaching methods	Notes	
L1. Signal transmiters: connection, configuration, utility	4	4		
L2. Indicators and recorders used in industrial automation	2	Wiring and comissioning of		
L3. Digital controllers: connection, configuration, testing,	4	common control systems		
connection to the PC, distributed control system, supervision,		equipment in typical		
	2	industrial application, PLC		
L4. Autotunning of digital controllers	2	programming.		
L5. PLC – I/O numerical configuration, applications	4	implementing and testing		
L6. PLC – I/O analogue configuration, applications	4	the applications on the lab		
L7-L9. Sorting system application, cut to length application	2	stands. Explanations and		
L10. PLC - connecting and programming the programmable	2	demonstrations on		
terminals, applications		whiteboard, discussions.		
L11. PID control using PLC	2	-		
L12. Relays: Reed, thermal, optical, magnetic, time	2			
Bibliography				
1. I. Nașcu, R. Crisan, Echipamente și sisteme de automatizare. Îndrum	nător de labo	prator		
2. Users Manuals.				

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Lectures and applications content was discussed with field experts. Over the years the course was favourably assessed by various rating agencies: National Council for Academic Evaluation and Accreditation, Romanian Agency for Quality Assurance in Higher Education.

10. Evaluation

Activity type	Assessment criteria	Assessment methods		Weight in the final grade		
Course	theory, problems	Written exam	Written exam – on	60%		
			line, Exam.net+Zoom			
Laboratory	individual work results	Oral	Oral on line (zoom)	40%		
Minimum standard of performance:						
Wiring and configuration of the automatization equipment, connection, wiring and programming tne PLC						

Date of filling in:		Title Firstname NAME	Signature
	Course	Sl. Dr. Ing Ruben Dan Crișan	
	Aplications	Sl.dr.ing. Ruben Crisan	
		As.drd.ing.Harja Gabriel	
		Ing. Mihai Stanese	
		Ing. Toderean Bianca	

Date of approval by the Automation Departament Board	Head of Automation Departament Prof.dr.ing. Honoriu VĂLEAN
Date of approval by the Automation and Computer Science Faculty	Dean
Council	Prof.dr.ing. Liviu Cristian MICLEA