Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	32.00

2. Data about the subject

2.1 Subject name		Cont	rol E	ngin	eering I	
2.2 Course responsible/led	turer		Ass	oc Pr	of.dr.eng. Cristina MURESAN Cristina.Muresan@aut.utcluj	.ro
2.3 Teachers in charge of a	applic	ations	Asi	st. Dr	. Eng. Isabela BIRS <u>Isabela.Birs@aut.utcluj.ro</u>	
2.4 Year of study	3	2.5 Semest	er	3	2.6 Assessment (E/C/V)	Е
2.7 Type of subject	DF – j	fundamental,	DD -	– in th	ne field, DS – specialty, DC – complementary	DD
2.7 Type of subject	DI – c	ompulsory, E	00 –	electiv	ve, Dfac – optional	DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	0	Laboratory	2	Project	0
3.2 Number of hours per semester	56	of which:	course	28	Seminar	0	Laboratory	28	Project	0
3.3 Individual study										
(a) Manual, lecture material	and no	otes, biblic	graphy							28
(b) Supplementary study in t	he libr	ary, online	and in t	he fie	eld					10
(c) Preparation for seminars/	'labora	atory work	s, home	vork,	reports, po	ortfol	ios, essays			28
(d) Tutoring										0
(e) Exams and tests										3
(f) Other activities:		•							·	0
	,	C (= = () .	(6)))							

3.4 Total hours of individual study (sum of (3.3(a)3.3(f)))	69
3.5 Total hours per semester (3.2+3.4)	125
3.6 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 Curriculum	System theory I
4.2 Competence	Knowledge's gained after attending Mathematic general courses,
	Theoretical Basis for Automatic Systems , System Identification

5. Requirements (where appropriate)

5.1. For the course	Prior reading of the course slides
5.2. For the applications	Prior preparation of laboratory work

6. Specific competences

6.1 Professional competences	C3.1 Identification of basic concepts of system theory, control engineering, of
	fundamental principles of modeling and simulation, as well as of process
	analysis methods in order to explain the basic problems of the field.
	C3.2 Explaining and interpreting some process automation problems through
	the application of automatic control fundamentals, of modeling,
	identification and simulation methods as well as of the computer aided
	design techniques.
	C3.3 Solving some types of control problems through: use of modeling
	methods and principles, development simulation scenarios, application of
	methods for the identification and analysis of processes (including
	technological processes) and systems.

	C3.4 Performance evaluation of automatic systems, of the strengths and weaknesses of projects (SWOT analysis), and of the consistency of methods and theoretical foundations C3.5 Configuration and deployment of industrial process control, of robots and flexible manufacturing lines and choice of equipment, tuning and putting into service of related structures.
6.2 Cross competences	

7. Course objectives

7.1 General objective	Providing the graduates with sound engineering knowledge and
	broad professional skills to design, develop, implement, manage
	and supervise automation systems
7.2 Specific objectives	To establish basic concepts of control engineering
	• Explanation and interpretation of control system's problems by applying the basics of automation
	Solve some types of control problems
	Performance evaluation of control systems
	Configuration and implementation of process control systems

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
Performance specifications of control system design	2		
Conventional and non-conventional structures	2		
Controller design using root locus method. The problem of correction	2		
Design of discontinuous (and cvasi-continuous) output controllers, on-off controller, step controller	2		
Frequency design methods based on second order equivalent system for PI, PD and PID controllers	2	Lectures, systematic exposition,	In case of major force
Quasi-optimum methods (Kessler's magnitude and symmetry)	2	conversation,	classes will
Frequency methods with imposed phase margin	2	teaching	be held
Theoretical Basis for experimental tuning methods (Offereins, Oppelt, Ziegler-Nichols)	2	demonstration, case study	online using Teams
Controller design for dead time processes	2		
Cascade and feed – forward loop control design	2		
Decentralized control of MIMO systems	2		
Decoupled control of MIMO systems	2		
Multivariable systems MIMO description using transfer matrix. Controller matrix design	2		
Advanced control methods	2		

Bibliography

- 1. Dorf, R. C., Bishop, R. H., Modern Control Systems, Prentice Hall, 2008
- 2. Ogata, K., Modern Control Engineering, Prentice Hall, 2010
- 3. Astrom, K.J. Advanced PID control, Instrumentation, Systems, and Automation Society, 2006

8.2 Aplications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
Steady –state error interpretation for control systems	2		
Performance measures of control systems	2		In case of
Root locus design method	2		major force
Correction for root locus design method	2	Brainstorming, case	classes will
Frequency design methods. P and PI controller	2	study, conversation	be held
Frequency design methods. PD and PID controller	2		online using
Quasi-optimum methods (Kessler's magnitude and symmetry)	2		Teams
Frequency design methods with imposed phase margin	2		

Cascade loop control design	2
Controller design using experimental design methods	2
Controller implementation using PLC. Case studies	2
Closed loop performance analysis according to PID parameter	2
variation. Case study: ACS simulator	Z
Closed loop performance analysis according to PID parameter	2
variation. Case study: speed and position control for a DC motor	2
Closed loop performance analysis according to PID parameter	2
variation. Case study: twin rotor aerodynamical system	2

Bibliography

- 1. Ogata, K., Matlab for Control Engineers, Prentice Hall, 2007
- 2. Grace, A., Control system Toolbox: for use with MATLAB: user's guide, Math Works, 1995
- 3. Dulf E.H., Muresan C.I., Control Engineering 1, Laboratory guide electronic version

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the discipline was discussed with the representatives of the prestigious companies in Romania, Europe and the United States of America and was repeatedly evaluated by the Romanian Government Agencies (CNEAA, ARACIS)

10. Evaluation

Exam grade>5, Laboratory grade>5

Activity type	Assessment criteria	Assessment methods	Weight in the final grade	
Course	Acquired knowledge Course activity	Written exam / online exam using Teams	60%	
Seminar				
Laboratory	Acquired practical skills, Laboratory activity	Practical assessment / online assessment using Teams	40%	
Project				
Minimum standard of performance:				

Date of filling in:

3.09.2021

Course
Assoc. prof.dr.eng. Cristina MURESAN

Aplications
Asist. Dr. Eng. Eng. Isabela BIRS

Date of approval by the Department Board of Automation	Head of Departament of Automation Prof.dr.ing. Honoriu VĂLEAN	
Date of approval by the Faculty Council of Automation and Computer Science	Dean Prof.dr.ing. Liviu Cristian MICLEA	