SYLLABUS

Mathematical Analysis I (Differential calculus)

1. Data about the program of study

	Dutu usout the program of study	
1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Mathematics
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Automation and Applied Informatics, English
1.7	Form of education	Full time
1.8	Subject code	1.00
1.8	Subject code	1.00

2. Data about the subject

2.1	Subject name					Mathematical Analysis I (Differential Calculus)					
2.2	.2 Subject area				Math	Mathematics					
2.3	Course respons	ible/l	ectur	er	Prof. dr. Dorian POPA						
2.4	Teachers in cha	arge o	of app	olications		Sl. dr. Alina RAMONA BAIAS					
2.5	Year of study	Ι	2.6	Semester	1	2.7	Assessment	exam	2.8	Subject category	DF/OB

3. Estimated total time

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	104	3.5	of which, course	28	3.6	applications	28
Individual study								Hours
Manu	al, lecture material and notes, bibliograph	hy						20
Supp	lementary study in the library, online and	in the fie	ld					4
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						21		
Tutoring							0	
Exams and tests						3		
Other activities						0		
3.7	3.7 Total hours of individual study 48							
3.8	Total hours per semester		104					
3.9	Number of credit points		4					

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Differential Calculus and Set Theory				
4.2	Competence	Competences in elementary Differential Calculus: elements of set theory,				
		limits, sequences and series, derivatives.				

5. Requirements (where appropriate)				
5.1	For the course			
5.2	For the applications			

6. Specific competences

	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts
	C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming
nal ces	paradigms, and modeling computational and communication systems
en	C1.3 – Building models for various components of computing systems
ess	C1.5 – Providing a theoretical background for the characteristics of the designed systems
ofo	
Pr CO	

ses	N/A		
ross			
comp			

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	A presentation of the concepts, notions, methods and fundamental techniques used in differential calculus.
7.2	Specific objectives	Use of the differential calculus in order to solve problems in engineering. Use of the differential calculus in modelling and solving practical problems concerning spatial forms.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Real numbers. Sequences of real numbers.	Explanation	
2	Series of real numbers. Definition, examples and properties.		
3	Tests of convergence for series of numbers	Demonstration	
4	Sequences of functions. Series of functions.		
5	Power series. Taylor formula and Taylor series.	Collaboration	
6	Trigonometric series. Fourier series.		
7-8	Metric spaces. Topology of a metric space. Banach fixed point theory.	Interactive	
9.	Functions of several variables. Limit and continuity.	activities	
10-	Differential Calculus for Functions of Several Variables. Partial derivatives.		
11	Differential operators. Directional derivative. Differential of functions of several		
	variables. Taylor's formula for functions of several variables.		
12	Extrema for functions of several variables.		
13	Implicit functions.		
14.	Conditional extrema.		
Biblio	ography		
	1. Dorian Popa, Calculus – Mediamira Cluj-Napoca, 2006.		
	2. O. Stănășilă, Analiză matematică, EDP București, 1981		
	3. Dumitru Mircea Ivan. Calculus. Editura Mediamira, Cluj-Napoca, 2002.	- 1	
8.2.	Applications (Seminars)	Teaching methods	Notes
1	Exercises related to sequences of numbers.		
2	Exercises related to series		
3	Exercices related to the convergence of series.		
4	Exercises related to power series: convergence and evaluation of sum.	Explanation	
5	Exercises concerning Taylor series.	_	
6	Exercises related to Fourier series	Demonstration	
7	Exercises concerning metric spaces and Banach Fixed Point Theorem.		
8-	Exercises related to: partial derivatives, derivative of composite functions,	Collaboration	
10	gradient, directional derivative, differential of functions of several variables,		
	Taylor's formula for functions of several variables.	Interactive	
11-	Exercises related to extrema for functions of several variables.	activities	
12			
13	Exercises related to implicit functions, change of coordinates and variables.		
14	Exercises concerning conditional extrema.		
Bibli	ography		
1.	N Vornicescu, D.M.Ivan, D. Pona, Calcul diferential, Editura Mediamira, 2004		
	t. vonneesea, D.M.Ivan, D. Popa, Calcar anterengia, Eartara Medianna, 2001.		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		Abilities of understanding and		Written examination		30%	
		using creatively the concepts and					
		proofs					
Applications		Abilities of solving problems and		Written examination		70%	
		applying algorithms					
10.4 Minimum	10.4 Minimum standard of performance						
Ability to present coherently a theoretical subject and to solve problems with practical content.							

Date of filling in:		Title NAME	Signature
13.09.2022	Course	Prof. Dorian POPA	
	Applications	SL. dr. Alina-Ramona BAIAS	

Date of approval by the Department Board 15.09.2022

Date of approval by the Faculty Council

Head of Department of MATHEMATICS Prof.dr. Dorian POPA

Dean Prof.dr.ing. Liviu Cristian MICLEA