SYLLABUS NUMERICAL CALCULUS

-	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Mathematics
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Automation and Applied Informatics, English
1.7	Form of education	Full time
1.8	Subject code	16.00

2. Data about the subject

2.1	Subject name					Num	erical Calculus				
2.2 Subject area			Mathematics								
2.3	Course respons	ible/l	ectur	er		Prof.	dr. Dumitru M	ircea IVAN			
2.4	2.4 Teachers in charge of applications Assist. Prof. dr. Diana OTROCOL, Assist. Dr. Flavius PATRULI				RULESCU						
2.5	Year of Study	II	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject category	DID/OB

3. Estimated total time

Sem.	Subject name	Lecture	App	olicat	ions	Lecture	App	licati	ons	Individual study	TOTAL	Credit
		[hours/week.]			[hour	s / se	mes	ter]			
			S	L	Р		S	L	Р			
3	Numerical Calculus	2	-	2	-	28	-	28	-	72	128	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	128	3.5	of which, course	28	3.6	applications	28
Indiv	vidual study							Hours
Man	ual, lecture material and notes, bibliograp	hy						30
Supp	lementary study in the library, online and	in the fie	ld					9
Prep	aration for seminars/laboratory works, how	mework, 1	reports	, portfolios, essays				30
Tuto	ring							0
Exar	ns and tests							3
Othe	r activities							0
3.7	Total hours of individual study		72					
38	Total hours par samastar		128	1				

3.8	Total hours per semester	128
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Differential and Integral Calculus
4.2	Competence	Competences in elementary Differential and Integral Calculus: derivatives,
		integrals, series.

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (5 credits)
s	C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity,
Professional competences	programming paradigms, and modeling computational and communication systems
ssic	C1.3 – Building models for various components of computing systems
lfes	C1.5 – Providing a theoretical background for the characteristics of the designed systems
Pro	
- 0	
- 3	

es	N/A
ss ence	
Cros	
103	
5	

7. Discipline objectives (as results from the key competences gained)

7.1		A presentation of the concepts, notions, methods and fundamental techniques used in differential calculus.
7.2	Specific objectives	Use of the differential calculus in order to solve problems in engineering.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Elements of Error Theory. Floating Point Arithmetic. Absolute and Relative Errors.	Explanation	2 hr.
2-3	Numerical Methods in Linear Algebra. Special Types of Matrices. Norms of Vectors and Matrices. Eigenvalues and Eigenvectors. Error Estimation.	Demonstration	4 hr
	Matrix Equations. Pivoting Elimination. Improved Solutions of Matrix Equations. Partitioning Methods for Matrix Inversion. LU Factorization. Doolittle's	Collaboration	
	Factorization. Cholesky's Factorization Method. Iterative Techniques for Solving Linear Systems. Jacobi Iterative Method. Gauss-Seidel Iterative Method. Relaxation Methods. Characteristic Polynomial: Leverrier Method. Characteristic	Interactive activities	
	Polynomial: Fadeev-Frame Method.		
4-5	Solutions of Nonlinear Equations. Method of Successive Approximation. The Bisection Method. The Newton-Raphson Method. The Secant Method. False Position Method. The Chebyshev Method. Numerical Solutions of Nonlinear Systems of Equations. Newton's Method for Systems of Nonlinear Equations. Steepest Descent Method.		4 hr
6-8	Elements of Interpolation Theory. Lagrange Interpolation. Divided Difference. Mean Value Properties in Lagrange Interpolation. Approximation by Interpolation. Hermite Interpolating Polynomial. Finite Differences. Interpolation of Multivariable Functions. Scattered Data Interpolation. Shepard's Method. Splines. B-splines.		6 hr
9-	Elements of Numerical Integration. Richardson's Extrapolation.		4 hr
10	Numerical Quadrature. Error Bounds in the Quadrature Methods. Trapezoidal Rule. Richardson's Deferred Approach to the Limit. Romberg Integration. Newton-Cotes Formulas. Simpson's Rule. Gaussian Quadrature.		
11- 12	Elements of Approximation Theory. Discrete Least Squares Approximation. Orthogonal Polynomials and Least Squares Approximation. Rational Function Approximation. Padé Approximation. Trigonometric Polynomial Approximation. Fast Fourier Transform. Bernstein Polynomial. Bézier Curves. <i>METAFONT</i> .		4 hr
13- 14	Integration of Ordinary/Partial Differential Equations. The Euler Method. The Taylor Series Method. The Runge-Kutta Method. The Runge-Kutta Method for Systems of Equations. Integration of Partial Differential Equations Parabolic Partial-Differential Equations. Hyperbolic Partial Differential Equations. Elliptic Partial Differential Equations.		4 hr
Biblio	graphy	1	
1	 Dumitru Mircea Ivan. Calculus. Editura Mediamira, Cluj-Napoca, 2002. ISBN 9 Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Media 973-9357-41-5. Ioan-Adrian Viorel, Dumitru Mircea Ivan, and Loránd Szabó. Metode numerice 	mira, Cluj-Napoca, 20	
,	electrică. Editura Universității din Oradea, 1. Mirzoa Ivan and Kélmén Dusztai. Mathematica hu Computer, Compreze Dublichi	a House Chui Nerra	1002
	 Mircea Ivan and Kálmán Pusztai. Mathematics by Computer. Comprex Publishin Applications (Seminars, Laboratory, Projects) 	Teaching methods	Notes
1	The applications follow the topics of the courses.	Explanation Demonstration	28 hr

	Collaboration Interactive activities	
--	--	--

Bibliography:

- 1. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca, 2003. ISBN 973-9357-41-5.
- 2. Ioan-Adrian Viorel, Dumitru Mircea Ivan, and Loránd Szabó. Metode numerice cu aplicații în ingineria electrică. Editura Universității din Oradea,

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade		
Course		Abilities of understanding and		Written examination		30%		
		using creatively the concepts and						
		proofs						
Applications		Abilities to solve problems and		Written examination		70%		
		applying algorithms						
10.4 Minimum standard of performance								
Ability to present coherently a theoretical subject and to solve problems with practical content.								

Date of filling in:		Title Firstname NAME	Signature
15.09.2021	Course	Prof. Mircea IVAN	
	Aplications	Assist. Prof. dr. Diana OTROCOL, Assist. Dr. Flavius PATRULESCU	

Date of approval by the Department Board 25.09.2022

Head of Departament of MATHEMATICS Prof.dr.ing. Dorian POPA

Date of approval by the Faculty Council

Dean Prof.dr.ing. Liviu Cristian MICLEA