SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automation and Computer Science
1.3	Department	Automation
1.4	Field of study	Systems Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Automation and Applied Informatics
1.7	Form of education	Full time
1.8	Subject code	13.00

2. Data about the subject

2.1	Subject name			Chemistry				
2.2	Subject area			Chemistry				
2.3	Course responsible/lecturer				Associate Prof. Amalia Zorica Mesaros, PhD eng. chem.			
2.4	Teachers in charge of seminars				Associate Prof. A	malia Zo	orica Mesaros, PhD eng. c	hem.
2.5	2.5 Year of study I 2.6 Semester 2		2.7 Assessment	Exam	2.8 Subject category	DF DI		

3. Estimated total time

3.1 Number of hours per week	3	3.2 of which, course:	3	3.3 applications:	1
3.4 Total hours in the curriculum	42	3.5 of which, course:	28	3.6 applications:	14
Individual study					
Manual, lecture material and notes,	bibliogra	phy			5
Supplementary study in the library, online and in the field					4
Preparation for seminars/laboratory works, homework, reports, portfolios, essays					5
Tutoring					2
Exams and tests					2
Other activities					0
		4.0			•

3.7	Total hours of individual study	18
3.8	Total hours per semester	60
3.9	Number of credit points	3

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic background in Chemistry from High school		
4.2	Competence	Basic knowledge and concepts specific to Chemistry, Math, and		
	Competence	Physics from High school		

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Classrooms, Cluj-Napoca (C408 laboratory, Bd. 103-105 Labor)

6. Specific competences

	C1. To use the fundamental knowledge of Chemistry in systems engineering
nal	C1.1. To use the basic concepts, theories, and methods for the design, synthesis and analysis of
Sion	materials to implement/design/solve practical problems regarding systems engineering
Professional	C1.2. To explain and to argue the answers based on the understanding and application of
Pro	fundamental concepts from the field of Chemistry and Materials Chemistry.
S	N.A.
Cross	
Cross	
100	

7. Discipline objectives (as results from the key competences gained)

		Developing the competences and knowledge related to
		General Chemistry useful for systems engineering.
		Understanding the fundamental concepts and principles common
		to the various branches of chemistry which deals in a systematic
7.1	General objective	way with the more important elements and the structures,
		properties and reactions of their compounds. A balance between
		experiment and theory, between quantitative and qualitative
		aspects of the course material, and between rigor and
		simplification is sought.
	Specific objectives	1. Understanding and manipulation of basic concepts in
		Chemistry and Materials Chemistry combined with Physics and
		Math.
		2. Developing skills and abilities necessary for solving simple
		and complex problems of Chemistry.
		3. Developing skills and abilities for the analysis of
7.2		chemical phenomena in chemistry which are
		transposed as problems in the Systems Engineering domain.
		4. Laboratory work emphasizes learning basic techniques,
		learning to manipulate the specific instruments and interpret
		numerical data, and learning the relationship between
		experimental measurement and chemical theory through guided,
		independent work by the student – only for on-site laboratories.

8. Contents

8	8.1. Lecture (syllabus)		Teaching methods	Notes
1	•	Fundamentals – Chemistry and Society. Chemistry - a science at three levels. The branches of Chemistry. Elements and atoms. Compounds. Moles and molar masses. SI units and derived units. Mixtures and solutions. Aqueous solutions. Reaction stoichiometry.		

2	Atoms: the quantum world. The electronic structure and the		
2.	periodic table. The periodicity of atomic properties.		
	Chemical bonds. Ionic bonds. Covalent bonds: Valence-		
3.	bond theory, Molecular orbital theory. Metallic bonds.		
	Intermolecular forces.		s
	Gases. The properties of gases. The gas laws. Molecular		vie
4.	motion: diffusion and effusion, the kinetic model of gases.	lon,	m ;
	The real gases.	ntati	эшс
	Liquids and solids. Liquid structure: order in liquids,	eser	of sc
5.	viscosity and surface tension. Solid structures:	ı pra	ou o
5.	classification, molecular, network, metallic solids, unit	lem y.	tati
	cells, ionic structures.	rob	sen s.
6.	Alloys, liquid crystals, ionic liquids. Semiconductors and	Presentation, heuristic conversation, exemplification, problem presentation, teaching exercise, case study, formative evaluation, learning by discovery.	Mainly use the blackboard. The projector used only for short ppt presentation or for presentation of some movies with recorded chemical experiments.
0.	ceramic materials. Electronic conduction in solids.	atio tudy y di	ard. for
7.	Thermodynamics: the first law. Systems, states and energy.	ific se st ng b	kbo 1 or 3xpe
٧.	Enthalpy. The enthalpy of chemical change.	mpl , cas	olac) ortion
8.	Thermodynamics: the second and third laws. Entropy.	exer ise, lea	ne b enta mic
0.	Global changes in entropy. Gibbs free energy.	on, o	se tl rese
9.	Physical equilibria. Phases and phase transition. Solubility.	satic g ex uati	y us pt p
9.	Colligative properties. Binary liquid mixtures. Colloids.	conversation, exemplification teaching exercise, case study, ve evaluation, learning by dis	Mainly use the blackboard. hort ppt presentation or for recorded chemical experim
	Chemical equilibria. Reactions at equilibrium. Equilibrium	con tead	M sho h re
10.	calculations. The response of equilibria to changes in	itic	for witl
	conditions.	urris	nly
	Acids and bases. The nature of acids and bases. Weak acids	, he	o p;
11.	and bases. The pH of solutions of weak acids and bases.	tion	nse
	Polyprotic acids and bases.	ntal	ctor
12.	Aqueous equilibria. Mixed solutions and buffers.	rese	ojec
12.	Titrations. Solubility equilibria.	<u>~</u>	e pr
13.	Chemical kinetics. Reaction rates. Concentration and time.		Th
10.	Reaction mechanisms. Models of reactions.		
	Electrochemistry. Representing redox reactions. Galvanic		
14.	cells. Electrolytic cells. Corrosion and protection against		
	corrosion.		
D'1 1'	-		

Bibliography

- 1. P. W. Atkins, L. Jones, *Chemical Principles*, W. H. Freeman & Company, 2007 ISBN-13: 978-0-7167-7355-9
- 2. M.-L. Ungureşan, D. M. Gligor, *General Chemistry*, Ed. UTPRESS, Cluj-Napoca, 2012, ISBN: 978-973-662-707-1

8.2. Applications/Seminars		Teaching methods	Notes
1	Laboratory safely rules / Determination of the acetic acid	Didactic and	Use of white/
1.	concentration by titration – 2hrs	experimental	magnetic
2.	Acids and bases (pH and pOH) -2hrs	proof, didactic	board,
3.	Hydrates: determining the chemical formula using	exercise,	computers and
3.	experimental data -2 hrs	conversation,	computer

4.	Calorimetry 2 hrs	observation and	programs for
5	Fe ₃ O ₄ (magnetite) – wet chemical synthesis / ZnO -	analysis,	data analysis.
5.	nanoparticles versus thin films -chemical synthesis 2 hrs	individual and	
6.	Corrosion and protection against corrosion 2 hrs	team work	
7.	Laboratory test / Brief review before final exam 2 hrs		

Bibliography

- 1. A. Mesaroş, L. Bolunduţ, M.-L. Ungureşan, Experimente de Chimie Generală, Ed. Galaxia Gutenberg, Colecţia Tehne 5, ISBN: 978-973-141-228-3, 2010, pg. 197.
- 2. L. Bolunduţ, A. Mesaroş, M.-L. Ungureşan, Electrochimia prin experimente, Ed. Galaxia Gutenberg, Colecţia Tehne 1, 2009, pg. 110.
- 3. M.-L. Ungureşan, L. Jantschi, D. M. Gligor, Aplicații Educaționale de Chimie pe Calculator, Ed. Mediamira, Cluj-Napoca, 2004.
- 4. On-line references: http://mihaela.academicdirect.ro/free/Indrumator_laborator.pdf

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job, and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the
			final grade
Course	The level of acquired theoretical		
	knowledge and practical skills,	Evaluation –	C = 80 %
	logical coherence, skills of	written exam	
	operating with acquired	(theory and problems)	
	knowledge in individual complex	−2 hours	
	activities.		
Laboratory	The level of acquired abilities	- Continuous formative	A = 20 %
		evaluation;	
		- Seminary individual work	
		(30 min)	
10.4 Minimum standard of performance			
$C \ge 5$ and $A \ge 5$			

Date of filling in 09/2022

Course responsible
Associate Prof. Amalia Zorica MESAROŞ,
PhD eng. chem

Teachers in charge of seminars Associate Prof. Amalia Zorica MESAROŞ, PhD eng. chem

Date of approval in the department

Head of department Prof. Honoriu VĂLEAN, PhD eng