Syllabus

1. Data about the program of study

<u></u>	
1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	11.00

2. Data about the subject

2.1 Subject name		Computer Aided Graphics			puter Aided Graphics		
2.2 Course responsible/lecturer		Prof.dr.eng. Liviu Miclea, Liviu.Miclea@aut.utcluj.ro					
2.3 Teachers in charge of	applic	ations	Assist.prof.dr.eng. Iulia Ștefan, Iulia.Stefan@aut.utcluj.ro, Assist.prof.dr.eng. Dan Goța, Dan.Gota@aut.utcluj.ro				
2.4 Year of study	1	1 2.5 Semester		2	2.6 Assessment (E/C/V)	E	
2.7 Tune of subject	DF – fundamental, DD – in the field, DS – specialty, DC – complementary DI			mental, DD – in the field, DS – specialty, DC – complementary			
2.7 Type of subject DI – compulsory, D		- 00	electi	ve, Dfac – optional	DI		

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	course	28	Seminar		Laboratory	28	Project	
3.3 Individual study										
(a) Manual, lecture material	and no	otes, biblio	graphy							18
(b) Supplementary study in the library, online and in the field								18		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						27				
(d) Tutoring							3			
(e) Exams and tests							3			
(f) Other activities:								0		
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2+3.4) 125										
3.6 Number of credit points					5					

4. Pre-requisites (where appropriate)

4.1 Curriculum	none	
4.2 Competence	Computational geometry concepts	
	Ability to use a computer and programming	
	Knowledge of electrical engineering and mechanical elements	
	Knowledge of basic elements specific to the Automatic Control	

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Seminars' attendance is compulsory, under the Technical University of Cluj-
	Napoca regulations

6. Specific competences

6.1 Professional competences	
	C3
	Operating with fundamentals of control engineering, process modelling,
	simulation, identification and analysis methods, and computer aided design.
6.2 Cross competences	
	N/A

7. Course objectives

7.1 General objective	The specific concepts, theory and scientific fundamentals methods usage in
	professional field activities of the system engineering area by dedicated
	software usage for Computer Aided Design and the tools and software
	development and enhancement from Information Theory to present
	associated filed knowledge.
7.2 Specific objectives	At the end of the lecture, the students are able to know and identify:
	• The importance and the level associated with the Computer Aided Design
	(CAD) activities for a Computer Integrated Manufacturing (CIM) process
	 Computer related management aspects of the graphical data
	• The industrial design standards for technical drawing, in general and
	instrumentation for automation industry standards, in particular.
	• Design technics for CAD, available for CAD-CAM (Computer Integrated
	Manufacturing) integration.
	At the end of the seminars, the students are able:
	• To understand and create a technical drawing
	 To write specific computer programs for graphical applications
	•To create the specific documentation associated with the design in the Automation field.
	• To use specific libraries as OpenGL for graphical information data manipulation
	• To use specific tools for CAD (AutoCAD)
	To manage the graphical information generated by CAD tool using specialized
	programming languages (e.g. AutoLISP) for CAD-CAM integration.

8. Contents

ching methods	Notes
sentation,	
iristic iversation,	Use of .ppt presentation,
mplification, case dies, formative	projector, blackboard
luation	
	ristic versation, mplification, case dies, formative

Bibliography

1. L. Miclea, CAD în Automatică, Curs, Catedra de Automatică, U.T. Cluj-Napoca (web).

2. I. Ștefan, L. Miclea, *CAD în Automatică*, Îndrumător de lucrări, Catedra de Automatică, U.T. Cluj-Napoca (web).

3. V. Baltac, s.a., Calculatoare numerice, grafica interactivă și prelucrarea imaginilor, Ed. Tehnică, 1985

4. D. Roman, s.a., Algoritmi de automatizare a proiectării, Ed. Militară, 1988.

5. H. Valean, L. Miclea, M. Damian, *Visual C++. Programarea Interfetelor Utilizator*, Ed. Dacia, 2004, 243 pag., ISBN 973-35-1808-5.

6. BĂDUŢ, Mircea, *AutoCAD-ul în trei timpi : inițiere, utilizare, performanță*, Polirom, 2011, p. 263, ISBN 978-973 46-1477-6

7. ***, Catalogul standardelor române, 2010.

8. ***, ANSI/ISA–5.1–1984 (R1992), Instrumentation Symbols and Identification, American National Standard, ISBN 0-87664-844-8.

9. P. Kopacek, *Einfuhrung in CIM*, Wien, 1993

10. ***, AutoCAD Reference Manual, Autodesk, 2011.

- 11. ***, Documentație OpenGL 4, http://www.opengl.org/sdk/docs/man/
- 12. AutoCAD[®], DXF Reference <u>http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-</u> reference_enu.pdf

13. http://www.iges5x.org/

13. http://www.iges5x.org/			
8.2 Aplications (seminar/laboratory/project)	No.hours	Teaching methods	Notes
L1. General rules for industrial design: scales, hatches, dimensioning, notations, standard characteristics for drawing templates	2		
L2. CAD environments: utilitarian commands, drawing, editing, displaying and extraction of information for entities in 2D space.	2		
L3. CAD environments: graphic aids, attributes and blocks in 2D space.	2		
L4. CAD environments, basic commands for 3D surfaces, views, textures, plot	2		
L5. Interface components: IGES and DXF (graphic format standards)	2		
L6. Graphic information management environments – AutoLISP (I): AutoLISP objects, data types, data types, user defined functions, variables types, data flux	2	Didactic and experimental proof,	Use of laboratory
L7. Graphical information management environments – AutoLISP (II): list manipulation, geometrical functions	2	didactic exercises, computers,	computers, equipment,
L8. Graphical information management environments – AutoLISP (III): CAD entities manipulation(group codes), selection sets	2	blackboard	blackboard
L9. Using characteristics as CAD-CAM integration elements. CAD data transfer.	2		
L10. Graphic information management - OpenGL (I): OpenGL basics(data types, syntax, vertex operations, 2D functions)	2		
L11. Graphic information management - OpenGL (II): 3D drawing, viewing, text rendering	2		
L12. Graphic information management - OpenGL(III): texture and lights in 3D	2		
L13. ObjectARX	2		
L14. Laboratory exam	2		
Bibliography			

Bibliography

1. L. Miclea, CAD în Automatică, Curs, Catedra de Automatică, U.T. Cluj-Napoca (web).

2. I. Ștefan, L. Miclea, *CAD în Automatică*, Îndrumător de lucrări, Catedra de Automatică, U.T. Cluj-Napoca (web).

3. V. Baltac, s.a., *Calculatoare numerice, grafica interactivă și prelucrarea imaginilor*, Ed. Tehnică, 1985

- 4. D. Roman, s.a., Algoritmi de automatizare a proiectării, Ed. Militară, 1988.
- 5. H. Valean, L. Miclea, M. Damian, *Visual C++. Programarea Interfetelor Utilizator*, Ed. Dacia, 2004, 243 pag., ISBN 973-35-1808-5.
- 6. BĂDUŢ, Mircea, *AutoCAD-ul în trei timpi : inițiere, utilizare, performanță*, Polirom, 2011, p. 263, ISBN 978-973 46-1477-6
- 7. ***, Catalogul standardelor române, 2010.
- 8. ***, ANSI/ISA–5.1–1984 (R1992), Instrumentation Symbols and Identification, American National Standard, ISBN 0-87664-844-8.
- 9. P. Kopacek, *Einfuhrung in CIM*, Wien, 1993
- 10. ***, AutoCAD Reference Manual, Autodesk, 2011.
- 11. ***, Documentație OpenGL 4, http://www.opengl.org/sdk/docs/man/
- 12. AutoCAD®, DXF Reference <u>http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-</u>

reference enu.pdf

13. http://www.iges5x.org/

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The graduated engineers are able to develop automation projects using CAD dedicated software, to generate ta representative animation for the functionality of the designed system using free software and a post processing application for product finalization using dedicated machinery.

10. Evaluation

On-site

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Knowledge assessment	Written exam E	0.5		
Seminar	N/A				
Laboratory	Solving exercises, practical skills and project evaluation	Application exam C	0.5		
Project	Project N/A				
Minimum standard of performance:					
Grade=0.5*E+0.5*	*C, E>=5 and C>=5 and N>=5				

On-line

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Knowledge assessment	Exam (E) - multiple choice test, on line, with Moodle.	0.5		
Seminar	N/A				
Laboratory	Solving exercises, practical skills and project evaluation	Application exam (C), on-line, with teams	0.5		
Project	N/A				
Minimum standard of performance:					
Grade=0.5*E+0.5*	*C, E>=5 and C>=5 and N>=5				

Date of filling in:		Title Firstname NAME	Signature
27.06.2022	Course	Prof.dr.ing. Liviu Miclea	
	Aplications	Assist.prof.dr.eng. Iulia Ștefan	
		Assist.prof.dr.eng. Dan Goța	